Empirical Assessment of Business Model Transformations Based on Model Simulation

  • María Fernández-Ropero
  • Ricardo Pérez-Castillo
  • Barbara Weber
  • Mario Piattini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7307)


Business processes are recognized by organizations as one of the most important intangible assets, since they let organizations improve their competitiveness. Business processes are supported by enterprise information systems, which can evolve over time and embed particular business rules that are not present anywhere else. Thus, there are many organizations with inaccurate business processes, which prevent the modernization of enterprise information systems in line with the business processes that they support. Therefore, business process mining techniques are often used to retrieve reliable business processes from the event logs recorded during the execution of enterprise systems. Unfortunately, such event logs are represented with purpose-specific notations such as Mining XML and still don’t apply the recent software modernization standard: ISO 19506 (KDM, Knowledge Discovery Metamodel). This paper presents an exogenous model transformation between these two notations. The main advantage is that process mining techniques can be effectively reused within software modernization projects according to the standard notation. This paper is particularly focused on the empirical evaluation of this transformation by simulating different kinds of business process models and several event logs with different sizes and configurations from such models. After analyzing all the model transformation executions, the study demonstrates that the transformation can provide suitable KDM models in a linear time in accordance with the size of the input models.


Business Processes Event Logs Knowledge Discovery Metamodel Model Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures, Leipzig, Alemania, p. 368. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Jeston, J., Nelis, J., Davenport, T.: Business Process Management: Practical Guidelines to Successful Implementations, 2nd edn., p. 469. Butterworth-Heinemann, Elsevier Ltd., NV, USA (2008)Google Scholar
  3. 3.
    Newcomb, P.: Architecture-Driven Modernization (ADM). In: Proceedings of the 12th Working Conference on Reverse Engineering. IEEE Computer Society (2005)Google Scholar
  4. 4.
    van der Aalst, W., Weijters, A.J.M.M.: Process-aware information systems: bridging people and software through process technology. In: Dumas, M., van der Aalst, W., Ter Hofstede, A. (eds.) Process Mining, pp. 235–255. John Wiley & Sons, Inc. (2005)Google Scholar
  5. 5.
    Van der Aalst, W.M.P., et al.: ProM: the process mining toolkit. In: 7th International Conference on Business Process Management (BPM 2009) - Demonstration Track, pp. 1–4. Springer, Ulm (2009)Google Scholar
  6. 6.
    van den Heuvel, W.-J.: Aligning Modern Business Processes and Legacy Systems: A Component-Based Perspective (Cooperative Information Systems). The MIT Press (2006)Google Scholar
  7. 7.
    Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery Metamodel - ISO/IEC 19506: a Standard to Modernize Legacy Systems. Computer Standards & Interfaces Journal, 519–532 (2011)Google Scholar
  8. 8.
    Pérez-Castillo, R., et al.: Integrating Event Logs into KDM Repositories. In: 27th Annual ACM Symposium on Applied Computing (SAC 2012). ACM, Riva del Garda (in Press, 2012)Google Scholar
  9. 9.
    van der Aalst, W.M.P.: Process-Aware Information Systems: Lessons to Be Learned from Process Mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 1–26. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  11. 11.
    Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ingvaldsen, J.E., Gulla, J.A.: Preprocessing Support for Large Scale Process Mining of SAP Transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Günther, C.W., van der Aalst, W.M.P.: A Generic Import Framework for Process Event Logs. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Pérez-Castillo, R., Weber, B., García-Rodríguez de Guzmán, I., Piattini, M.: Toward Obtaining Event Logs from Legacy Code. In: Muehlen, M.z., Su, J. (eds.) BPM 2010, Part II. LNBIP, vol. 66, pp. 201–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Zou, Y., Hung, M.: An Approach for Extracting Workflows from E-Commerce Applications. In: Proceedings of the Fourteenth International Conference on Program Comprehension, pp. 127–136. IEEE Computer Society (2006)Google Scholar
  16. 16.
    Cai, Z., Yang, X., Wang, W.: Business Process Recovery for System Maintenance - An Empirical Approach. In: 25th International Conference on Software Maintenance (ICSM 2009), pp. 399–402. IEEE Computer Society, Edmonton (2009)Google Scholar
  17. 17.
    Di Francescomarino, C., Marchetto, A., Tonella, P.: Reverse Engineering of Business Processes exposed as Web Applications. In: 13th European Conference on Software Maintenance and Reengineering (CSMR 2009), pp. 139–148. IEEE Computer Society, Fraunhofer IESE (2009)CrossRefGoogle Scholar
  18. 18.
    Wong, P., Gibbons, J.: On Specifying and Visualising Long-Running Empirical Studies. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 76–90. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Syriani, E., Vangheluwe, H.: Programmed Graph Rewriting with Time for Simulation-Based Design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 91–106. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Biermann, E., et al.: Flexible visualization of automatic simulation based on structured graph transformation. IEEE (2008)Google Scholar
  21. 21.
    OMG, QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, OMG (2008),
  22. 22.
    Pérez-Castillo, R.: MXML to KDM Transformation implemented in QVT Relations (2011), (cited March 29, 2011)
  23. 23.
    Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering. In: Guide to Advanced Empirical Software Engineering, pp. 201–228 (2008)Google Scholar
  24. 24.
    Burattin, A., Sperduti, A.: PLG: a Framework for the Generation of Business Process Models and their Execution Logs (2011)Google Scholar
  25. 25.
    Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for Workflow nets. Information and Software Technology 51(3), 610–626 (2009)CrossRefGoogle Scholar
  26. 26.
    ikv++, Medini QVT (2008), ikv++ technologies ag Google Scholar
  27. 27.
    R. The R Project for Statistical Computing (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María Fernández-Ropero
    • 1
  • Ricardo Pérez-Castillo
    • 1
  • Barbara Weber
    • 2
  • Mario Piattini
    • 1
  1. 1.Instituto de Tecnologías y Sistemas de la InformaciónUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.University of InnsbruckInnsbruckAustria

Personalised recommendations