Conformance Relations for Labeled Event Structures

  • Hernán Ponce de León
  • Stefan Haar
  • Delphine Longuet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7305)


We propose a theoretical framework for testing concurrent systems from true concurrency models like Petri nets or networks of automata. The underlying model of computation of such formalisms are labeled event structures, which allow to represent concurrency explicitly. The activity of testing relies on the definition of a conformance relation that depends on the observable behaviors on the system under test, which is given for sequential systems by ioco type relations. However, these relations are not capable of capturing and exploiting concurrency of non sequential behavior. We study different conformance relations for labeled event structures, relying on different notions of observation, and investigate their properties and connections.


Partial Order Event Structure Concurrent System Concurrent Event Conformance Testing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milner, R.: Communication and concurrency. PHI Series in computer science. Prentice Hall (1989)Google Scholar
  2. 2.
    Hoare, T.: Communicating Sequential Processes. Prentice-Hall (1985)Google Scholar
  3. 3.
    ITU-TS: Recommendation Z.100: Specification and Description Language (2002)Google Scholar
  4. 4.
    Brinksma, E., Scollo, G., Steenbergen, C.: Lotos specifications, their implementations and their tests. In: Linn, R.J., Uyar, M.U. (eds.) Conformance testing methodologies and architectures for OSI protocols, pp. 468–479. IEEE Computer Society Press (1995)Google Scholar
  5. 5.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Abramsky, S.: Observation equivalence as a testing equivalence. Theoretical Computer Science 53, 225–241 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification Testing and Verification VIII, pp. 63–74. North-Holland (1988)Google Scholar
  8. 8.
    Phillips, I.: Refusal testing. Theoretical Computer Science 50, 241–284 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Protocol Specification, Testing and Verification IX, pp. 87–98. North-Holland (1990)Google Scholar
  10. 10.
    Segala, R.: Quiescence, fairness, testing, and the notion of implementation. Information and Computation 138(2), 194–210 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software - Concepts and Tools 17(3), 103–120 (1996)zbMATHGoogle Scholar
  12. 12.
    De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica 24(2), 211–237 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    von Bochmann, G., Haar, S., Jard, C., Jourdan, G.-V.: Testing Systems Specified as Partial Order Input/Output Automata. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 169–183. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Haar, S., Jard, C., Jourdan, G.-V.: Testing Input/Output Partial Order Automata. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 171–185. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, part I. Theoretical Computer Science 13, 85–108 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar
  17. 17.
    Nielsen, M., Sassone, V., Winskel, G.: Relationships Between Models of Concurrency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 425–476. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  18. 18.
    Aceto, L., De Nicola, R., Fantechi, A.: Testing Equivalences for Event Structures. In: Venturini Zilli, M. (ed.) Mathematical Models for the Semantics of Parallelism. LNCS, vol. 280, pp. 1–20. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  19. 19.
    Balaguer, S., Chatain, T., Haar, S.: A concurrency-preserving translation from time Petri nets to networks of timed automata. In: International Symposium on Temporal Representation and Reasoning, pp. 77–84. IEEE Computer Society Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hernán Ponce de León
    • 1
  • Stefan Haar
    • 1
  • Delphine Longuet
    • 2
  1. 1.École Normale Supérieure de Cachan and CNRSINRIA and LSVFrance
  2. 2.LRI UMR8623Univ. Paris-SudOrsayFrance

Personalised recommendations