Skip to main content

A Fuzzy Random Variable Approach to Life Insurance Pricing

  • Conference paper

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 287)

Abstract

This paper develops life insurance pricing with stochastic representation of mortality and fuzzy quantification of interest rates following the methodology by Andrés and González-Vila (2012). We show that modelling the present value of life insurance contracts with fuzzy random variables allows a well-founded quantification of their fair price and the risk resulting from the uncertainty of mortality and discounting rates. So, we firstly describe fuzzy random variables and define some associated measures: the mathematical expectation, the variance, distribution function and quantiles. Subsequently the present value of life insurance policies is modelled with fuzzy random variables. We finally show how an actuary can quantify the price and the risk of a life insurance portfolio when the contracts present value is given by fuzzy random variables.

Keywords

  • Fuzzy finance
  • Fuzzy random variables
  • Life insurance mathematics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-30451-4_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-30451-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alegre, A., Claramunt, M.M.: Allocation of solvency cost in group annuities: Actuarial principles and cooperative game theory. Insurance: Mathematics and Economic 17, 19–34 (1995)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • de Andrés, J., González-Vila, L.: Using fuzzy random variables in life annuities pricing. Fuzzy Sets and Systems 188, 27–44 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • de Andrés, J., Terceño, A.: Applications of Fuzzy Regression in Actuarial Analysis. Journal of Risk and Insurance 70, 665–699 (2003)

    CrossRef  Google Scholar 

  • Betzuen, A., Jiménez, M., Rivas, J.A.: Actuarial mathematics with fuzzy parameters. An application to collective pension plans. Fuzzy Economic Review 2, 47–66 (1997)

    Google Scholar 

  • Buckley, J.J.: The fuzzy mathematics of finance. Fuzzy Sets and Systems 21, 57–73 (1987)

    MathSciNet  CrossRef  Google Scholar 

  • Couso, I., Dubois, D., Montes, S., Sánchez, L.: On various definitions of the variance of a fuzzy random variable. In: 5th International Symposium on Imprecise Probabilities and Their Applications, Prague, Czech Republic (2007)

    Google Scholar 

  • Cummins, J.D., Derrig, R.A.: Fuzzy financial pricing of property-liability insurance. North American Actuarial Journal 1, 21–44 (1997)

    MathSciNet  MATH  Google Scholar 

  • Derrig, R.A., Ostaszewski, K.: Managing the tax liability of a property liability insurance com-pany. Journal of Risk and Insurance 64, 695–711 (1997)

    CrossRef  Google Scholar 

  • Derrig, R.A., Ostaszewski, K.: Fuzzy Sets. In: Encyclopaedia of Actuarial Science, vol. 2, pp. 745–750. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  • Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets and Systems 120, 487–497 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Gerber, H.U.: Life Insurance Mathematics. Springer, Berlin (1995)

    MATH  Google Scholar 

  • Gil-Aluja, J.: Investment on uncertainty. Kluwer Academic Publishers, Dordretch (1998)

    Google Scholar 

  • Guangyuan, W., Yue, Z.: The theory of fuzzy stochastic processes. Fuzzy Sets and Systems 51, 161–178 (1992)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Huang, T., Zhao, R., Tang, W.: Risk model with fuzzy random individual claim amount. European Journal of Operational Research 192, 879–890 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Kaufmann, A.: Fuzzy subsets applications in O.R. and management. In: Jones, A., Kaufmann, A., Zimmermann, H.J. (eds.) Fuzzy Set Theory and Applications, pp. 257–300. Reidel, Dordrecht (1986)

    CrossRef  Google Scholar 

  • Kaufmann, A., Gil-Aluja, J.: Las matemáticas del azar y de la incertidumbre. Ceura, Madrid (1990)

    Google Scholar 

  • Körner, R.: On the variance of fuzzy random variables. Fuzzy Sets and Systems 92, 83–93 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Krätschmer, V.: A unified approach to fuzzy random variables. Fuzzy Sets and Systems 123, 1–9 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Kruse, R., Meyer, K.D.: Statistics with vague data. Reidel, Dordrecht (1987)

    MATH  CrossRef  Google Scholar 

  • Kwakernaak, H.: Fuzzy random variables I: Definitions and Theorems. Information Sciences 15, 1–29 (1978)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Kwakernaak, H.: Fuzzy random variables II: Algorithms and Examples for the Discrete Case. Information Sciences 17, 253–278 (1979)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Lemaire, J.: Fuzzy insurance. Astin Bulletin 20, 33–55 (1990)

    CrossRef  Google Scholar 

  • Li Calzi, M.: Towards a general setting for the fuzzy mathematics of finance. Fuzzy Sets and Systems 35, 265–280 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Ostaszewski, K.: An investigation into possible applications of fuzzy sets methods in actuarial science. Society of Actuaries, Schaumburg (1993)

    Google Scholar 

  • Pitacco, E.: Simulation in insurance. In: Goovaerts, M., De Vylder, F., Haezendonck, J. (eds.) Insurance and Risk Theory, pp. 43–44. Reidel, Dordrecht (1986)

    Google Scholar 

  • Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Journal of Mathematical Analysis and Applications 114, 409–422 (1986)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Shapiro, A.F.: Fuzzy logic in insurance. Insurance: Mathematics and Economics 35, 399–424 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Shapiro, A.F.: Fuzzy random variables. Insurance: Mathematics and Economics 44, 307–314 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Yakoubov, Y.H., Haberman, S.: Review of actuarial applications of fuzzy set theory. Actuarial Research Paper n. 105. Department of Actuarial Science and Statistics of the City University, London (1998)

    Google Scholar 

  • Zhao, R., Govind, R.: Defuzzification of fuzzy intervals. Fuzzy Sets and Systems 43, 45–55 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Zhong, C., Zhou, G.: The equivalence of two definitions of fuzzy random variables. In: Proceedings of the 2nd IFSA Congress, Tokyo, pp. 59–62 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge de Andrés-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Andrés-Sánchez, J., González-Vila Puchades, L. (2012). A Fuzzy Random Variable Approach to Life Insurance Pricing. In: Gil-Lafuente, A., Gil-Lafuente, J., Merigó-Lindahl, J. (eds) Soft Computing in Management and Business Economics. Studies in Fuzziness and Soft Computing, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30451-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30451-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30450-7

  • Online ISBN: 978-3-642-30451-4

  • eBook Packages: EngineeringEngineering (R0)