Identifying Conceptual Layers in the Ontology Development Process

  • Manolis Wallace
  • Panos Alexopoulos
  • Phivos Mylonas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7297)


Whilst a variety of ontological engineering methodologies exist, their actual application is far from trivial, mainly due to the widely diverse nature of the steps involved, that require different forms of expertise, typically possessed by different individuals. In order to address this, in this work we propose the separation between the conceptualization and formalization parts of the process. As proof of concept we apply the proposed approach to the IKARUS methodology, develop a graphical tool to support the resulting methodology and present results from its experimental application. Early results show that the separation of the conceptualization and formalization parts of the ontological engineering methodologies can greatly facilitate the efficiency and effectiveness of the resulting methodologies.


Domain Expert Graphical Tool Ontology Development Ontology Engineering Conceptual Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexopoulos, P., Wallace, M., Kafentzis, K., Askounis, D.: IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones. Knowledge and Information Systems, doi:10.1007/s10115-011-0457-6Google Scholar
  2. 2.
    Analyti A., Antoniou G., Damsio C.V., Wagner G., Computability and Complexity Issues of Extended RDF. In: Proceedings of the 18th European Conference on Artificial Intelligence (2008)Google Scholar
  3. 3.
    Arndt, R., Troncy, R., Staab, S., Hardman, L.: COMM: A Core Ontology for Multimedia Annotation. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn. International Handbooks on Information Systems, pp. 403–421. Springer (2009)Google Scholar
  4. 4.
    Baclawski, K., Kokar, M.M., Waldinger, R., Kogut, P.A.: Consistency checking of semantic web ontologies. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 454–459. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bouamrane, M.-M., Rector, A., Hurrell, M.: Using OWL ontologies for adaptive patient information modelling and preoperative clinical decision support. Knowledge and Information Systems, 1–14 (2010)Google Scholar
  6. 6.
    Fernandez Lopez, M., Gomez Perez, A., Juristo, N.: Methontology: From ontological art towards ontological engineering. In: Proceedings of the Spring Symposium on Ontological Engineering of AAAI (1997)Google Scholar
  7. 7.
    Fodeh, S., Punch, B., Tan, P.-N.: On ontology-driven document clustering using core semantic features. Knowledge and Information Systems, 1–27 (2011)Google Scholar
  8. 8.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a Web Ontology Language. Web Semantics: Science, Services and Agents on the World Wide Web 1(1), 7–26 (2003)CrossRefGoogle Scholar
  9. 9.
    Hu, H., Zhao, Y., Wang, Y., Li, M., Wang, D., Wu, W., He, J., Du, X., Wang, S.: Cooperative Ontology Development Environment CODE and a Demo Semantic Web on Economics. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 1049–1052. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Jarrar, M., Meersman, R.: Ontology Engineering -The DOGMA Approach. In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891, pp. 7–34. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for Knowledge Management: An Information Systems Perspective. Knowledge and Information Systems 6(4), 380–401 (2004)CrossRefGoogle Scholar
  12. 12.
    Kompatsiaris, Y., Hobson, P. (eds.): Semantic Multimedia and Ontologies: Theory and Applications. Springer (March 2008)Google Scholar
  13. 13.
    Kotis, K., Vouros, G.: Human-Centered Ontology Engineering: the HCOME Methodology. International Journal of Knowledge and Information Systems (KAIS) 10, 109–131 (2006)CrossRefGoogle Scholar
  14. 14.
    Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent Systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  15. 15.
    McGuinness, D.L., Fikes, R., Hendler, J., Stein, L.A.: DAML+OIL: An Ontology Language for the Semantic Web. IEEE Intelligent Systems 17(5), 72–80 (2002)CrossRefGoogle Scholar
  16. 16.
    Sanchez, D., Isern, D., Millan, M.: Content annotation for the semantic web: an automatic web-based approach. Knowledge and Information Systems, 1–26 (2010)Google Scholar
  17. 17.
    Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The DILIGENT knowledge processes. Journal of Knowledge Management 9(5) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manolis Wallace
    • 1
  • Panos Alexopoulos
    • 2
  • Phivos Mylonas
    • 3
  1. 1.Department of Computer Science and TechnologyUniversity of PeloponneseTripolisGreece
  2. 2.iSOCOMadridSpain
  3. 3.Department of InformaticsIonian UniversityCorfuGreece

Personalised recommendations