Skip to main content

Predicting Human miRNA Target Genes Using a Novel Evolutionary Methodology

  • Conference paper
Artificial Intelligence: Theories and Applications (SETN 2012)

Abstract

The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3’untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  Google Scholar 

  2. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., Tuschl, T.: New microRNAs from mouse and human. RNA 9(2), 175–179 (2003)

    Article  Google Scholar 

  3. Lai, E.C.: microRNAs: runts of the genome assert themselves. Curr. Biol. 13(23), R925–R936 (2003)

    Google Scholar 

  4. Mendes, N.D., Freitas, A.T., Sagot, M.-F.: Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res. 37(8), 2419–2433 (2009)

    Article  Google Scholar 

  5. Li, L., Xu, J., Yang, D., Tan, X., Wang, H.: Computational approaches for microRNA studies: a review. Mamm. Genome 21(1-2), 1–12 (2010)

    Article  Google Scholar 

  6. Lewis, B.P., Burge, C.B.: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20 (2005)

    Article  Google Scholar 

  7. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C., Rajewsky, N.: MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1(1), 51–66 (2005)

    Article  Google Scholar 

  8. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D.S.: MicroRNA targets in Drosophila. Genome Biol. 5(1), R1.1–R1.14 (2005)

    Google Scholar 

  9. Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., Hatzigeorgiou, A.: A combined computational- experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178 (2004)

    Article  Google Scholar 

  10. Kim, S.K., Nam, J.W., Rhee, J.K., Lee, W.J., Zhang, B.T.: miTarget: microRNA target-gene prediction using a support vector machine. BMC Bioinformatics 7, 411–422 (2006)

    Article  Google Scholar 

  11. Malik, Y., Jung, S., Kossenkov, A., Showe, L., Showe, M.: Naïve Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 23(22), 2987–2992 (2007)

    Article  Google Scholar 

  12. Griffiths-Jones, S.: The microRNA Registry. Nucl. Acids Res. 32(suppl. 1), D109–D111 (2004)

    Google Scholar 

  13. Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P., Hatzigeorgiou, A.G.: The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res. 37, D155–D158 (2009)

    Google Scholar 

  14. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., Li, T.: miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 37, D105–D110 (2009)

    Google Scholar 

  15. Saetrom, O., Snøve, O., Saetrom, P.: Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11, 995–1003 (2005)

    Article  Google Scholar 

  16. Hsu, P.W.: miRNAMAP: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34, D135–D139 (2006)

    Google Scholar 

  17. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  18. Lewis, D.P., Jebara, T., Noble, W.S.: Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22, 2753–2760 (2006)

    Article  Google Scholar 

  19. Holland, J.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge (1995)

    Google Scholar 

  20. Vapnik, V.N.: The nature of statistical learning theory. Springer (2000)

    Google Scholar 

  21. Jadaan, O., Rao, C.R., Rajamani, L.: Parametric Study to Enhance Genetic Algorithm Performance, Using Ranked based Roulette Wheel Selection method. In: InSciT 2006, Merida, Spain, vol. 2, pp. 274–278 (2006)

    Google Scholar 

  22. Thierens, D.: Adaptive Mutation Rate Control Schemes in Genetic Algorithms. In: Proceedings of the 2002 IEEE World Congress on Computational Intelligence: Congress on Evolutionary Computation, pp. 980–985 (2002)

    Google Scholar 

  23. Mavroudi, S., Katsanos, P., Papadimitriou, S., Likothanassis, S.: Transparent Classification Process of Bioinformatics Data with an Approximated Support Vector Fuzzy Inference System. In: The International Special Topic Conference on Information Technology in Biomedicine (ITAB 2006), Ioannina, Epirus Greece, October 26-28 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aigli, K., Dimitris, K., Konstantinos, T., Spiros, L., Athanasios, T., Seferina, M. (2012). Predicting Human miRNA Target Genes Using a Novel Evolutionary Methodology. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds) Artificial Intelligence: Theories and Applications. SETN 2012. Lecture Notes in Computer Science(), vol 7297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30448-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30448-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30447-7

  • Online ISBN: 978-3-642-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics