Skip to main content

Bagged Nonlinear Hebbian Learning Algorithm for Fuzzy Cognitive Maps Working on Classification Tasks

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7297)

Abstract

Learning of fuzzy cognitive maps (FCMs) is one of the most useful characteristics which have a high impact on modeling and inference capabilities of them. The learning approaches for FCMs are concentrated on learning the connection matrix, based either on expert intervention and/or on the available historical data. Most learning approaches for FCMs are Hebbian-based and evolutionary-based algorithms. A new learning algorithm for FCMs is proposed in this research work, inheriting the main aspects of the bagging approach which is an ensemble based learning approach. The FCM nonlinear Hebbian learning (NHL) algorithm enhanced by the bagging technique is investigated contributing to an approach where the model is trained using NHL algorithm as a base learner classifier. This work is inspired from the neural networks ensembles and it is used to learn the FCM ensembles produced by the NHL exploiting better classification accuracies.

Keywords

  • Ensemble Method
  • Autistic Disorder
  • Ensemble Learning
  • Connection Matrix
  • Neural Network Ensemble

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Machine Studies 24(1), 65–75 (1986)

    CrossRef  MATH  Google Scholar 

  2. Glykas, G.: Fuzzy Cognitive Maps: Theory, Methodologies, Tools and Applications, 1st edn. Springer, Heidelberg (2010)

    CrossRef  MATH  Google Scholar 

  3. Papageorgiou, E.I.: A Review Study of FCMs Applications during the last decade. In: Porc. FUZZ-IEEE 2011, Taipei, Taiwan, June 27-30, pp. 828–835 (2011)

    Google Scholar 

  4. Papageorgiou, E.I.: Learning Algorithms for Fuzzy Cognitive Maps: A Review Study. IEEE Transactions on SMC Part C (2011) (in press)

    Google Scholar 

  5. Papageorgiou, E., Stylios, C., Groumpos, P.: Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule. In: Gedeon, T(T.) D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 256–268. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Froelich, W., Wakulicz-Deja, A.: Mining temporal medical data using adaptive fuzzy cognitive maps. In: Proc. 2nd Conf. on Human System Interactions, HSI 2009, art. no. 5090946, pp. 16–23 (2009)

    Google Scholar 

  7. Stach, W., Kurgan, L.A., Pedrycz, W.: M. Reformat, Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems 153(3), 371–401 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Papakostas, G.A., Boutalis, Y.S., Koulouriotis, D.E., Mertzios, B.G.: FCMs for pattern recognition applications. Int. J. Pattern Recogn. & Artif. Intel. 22(8), 1461–1486 (2008)

    CrossRef  Google Scholar 

  9. Kim, M.-C., Kim, C.O., Hong, S.R., Kwon, I.-H.: Forward-backward analysis of RFID-enabled supply chain using fuzzy cognitive map and genetic algorithm. Expert Systems with Applications 35(3), 1166–1176 (2008)

    CrossRef  Google Scholar 

  10. Słoń, G., Yastrebov, A.: Optimization and Adaptation of Dynamic Models of Fuzzy Relational Cognitive Maps. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 95–102. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Papageorgiou, E.I., Spyridonos, P., Glotsos, D., Stylios, C.D., Ravazoula, P., Nikiforidis, G., Groumpos, P.P.: Brain Tumour Characterization using the Soft. Computing Technique of Fuzzy Cognitive Maps. Applied Soft Computing 8, 820–828 (2008)

    CrossRef  Google Scholar 

  12. Policar, R.: Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, third quarter, 21–46 (2006)

    Google Scholar 

  13. Zhou, Z.-H.: Ensemble learning. Encyclopedia of Biometrics, 270–273 (2009)

    Google Scholar 

  14. Dietterich, T.G.: Machine learning research: Four current directions. AI Magazine 18(4), 97–136 (1997)

    Google Scholar 

  15. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Kannappan, A., Tamilarasi, A., Papageorgiou, E.I.: Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Systems with Applications 38(3), 1282–1292 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papageorgiou, E.I., Oikonomou, P., Kannappan, A. (2012). Bagged Nonlinear Hebbian Learning Algorithm for Fuzzy Cognitive Maps Working on Classification Tasks. In: Maglogiannis, I., Plagianakos, V., Vlahavas, I. (eds) Artificial Intelligence: Theories and Applications. SETN 2012. Lecture Notes in Computer Science(), vol 7297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30448-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30448-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30447-7

  • Online ISBN: 978-3-642-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)