Emerge-Sort: Swarm Intelligence Sorting

  • Dimitris Kalles
  • Vassiliki Mperoukli
  • Andreas Papandreadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7297)


We examine sorting on the assumption we do not know in advance which way to sort. We use simple local comparison and swap operators and demonstrate that their repeated application ends up in sorted sequences. These are the basic elements of Emerge-Sort, an approach to self-organizing sorting, which we experimentally validate and observe a run-time behavior of O(n 2).


Cellular Automaton Local Operator Swarm Intelligence Direction Bias Autonomic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting and election in anonymous asynchronous rings. Journal of Parallel and Distributed Computing 64, 254–265 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Prasath, R.: Algorithms for Distributed Sorting and Prefix Computation in Static Ad Hoc Mobile Networks. In: 2010 International Conference on Electronics and Information Engineering, vol. 2, pp. 144–148 (2010)Google Scholar
  3. 3.
    Israeli, A., Jalfon, M.: Uniform Self-Stabilizing Ring Orientation. Information and Computation 104(2-3), 175–196 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Casadei, M., Gardelli, L., Viroli, M.: Collective Sorting Tuple Spaces. In: 11th International Workshop on Cooperative Information Agents, Delft, The Netherlands, pp. 255–269 (2006)Google Scholar
  5. 5.
    Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.: Using Ant’s Brood Sorting to Increase Fault Tolerance in Linda’s Tuple Distribution Mechanism. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 255–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bénézit, F., Thiran, P., Vetterli, M.: The Distributed Multiple Voting Problem. IEEE Journal of Selected Topics in Signal Processing 5(4), 791–804 (2011)CrossRefGoogle Scholar
  7. 7.
    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Fixed Response Thresholds and the Regulation of Division of Labour in Insect Societies. Bulletin of Mathematical Biology 60, 753–807 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  9. 9.
    Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 95–113 (2008)CrossRefGoogle Scholar
  10. 10.
    Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, F., Gambardella, L., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from biology to distributed computing. ACM Transactions on Autonomous and Adaptive Systems 1(1), 26–66 (2006)CrossRefGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst case equilibria. In: Annual Symposium on Theoretical Aspects of Computer, pp. 404–413. Springer (1999)Google Scholar
  12. 12.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  13. 13.
    Loui, M.C.: The complexity of sorting on distributed systems. Information and Control 60, 70–85 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gonzaga de Sa, P., Maes, C.: The Gacs-Kurdyumov-Levin automaton revisited. Journal of Statistical Physics 67(3-4), 507–522 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gordillo, J.L., Luna, J.V.: Parallel sort on a linear array of cellular automata. In: International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1903–1907 (1994)Google Scholar
  16. 16.
    Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)zbMATHGoogle Scholar
  17. 17.
    Andre, D., Bennett III, F.H., Koza, J.R.: Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem. In: First Annual Conference on Genetic Programming, Stanford, CA, pp. 3–11 (1996)Google Scholar
  18. 18.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis and applications. In: 24th Annual Joint Conference of the IEEE and Communication Societies, pp. 1653–1664 (2005)Google Scholar
  19. 19.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: IEEE Conference on Foundations of Computer Science, pp. 482–491 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dimitris Kalles
    • 1
    • 2
  • Vassiliki Mperoukli
    • 1
  • Andreas Papandreadis
    • 2
  1. 1.Hellenic Open UniversityPatrasGreece
  2. 2.Open University of CyprusNicosiaCyprus

Personalised recommendations