Simulation Analysis of Biomass Gasification in an Autothermal Gasifier Using Aspen Plus

  • Zhongbin Fu
  • Yaning Zhang
  • Hui Liu
  • Bo Zhang
  • Bingxi Li
Conference paper

Abstract

Based on simulation, biomass gasification in an autothermal gasifier is analyzed, the effects of the equivalence ratio (ER), reactor temperature and gasification pressure on the composition and the higher heating values (HHV) of the product gas are also covered. The results indicate that the temperature in the gasifier increases when the ER increases, while the HHV of the product gas decreases. In an autothermal gasifier, the temperature which is controlled by varying ER, has the same influence on the composition and HHV of the product gas as the ER does. Higher gasification pressure slightly increases the temperature in the gasifier and the HHV of the product gas.

Keywords

Biomass gasification Autothermal gasifier Simulation analysis Aspen Plus 

References

  1. 1.
    Tan LL, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III: further discussion on the formation of HCN and NH3 during pyrolysis. Fuel. 2000;79(15):1883–9.CrossRefGoogle Scholar
  2. 2.
    Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tar elimination in biomass gasification process. Biomass Bioenergy. 2003;24(2):125–40.CrossRefGoogle Scholar
  3. 3.
    Ptasinski KJ, Prins MJ, Pierik A. Exergetic evaluation of biomass gasification. Energy. 2007;32(4):568–74.CrossRefGoogle Scholar
  4. 4.
    Kaewluan S, Pipatmanomai S. Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Convers Manage. 2011;52(1):75–84.CrossRefGoogle Scholar
  5. 5.
    Narváez I, Orío A, Aznar MP, Corella J. Biomass gasification with air in an atmospheric bubbling fluidized bed: effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res. 1996;35(7):2110–20.CrossRefGoogle Scholar
  6. 6.
    Mansaray KG, Ghaly AE, Al-Taweel AM, Hamdullahpur F, Ugursal VI. Air gasification of rice husk in a dual distributor type fluidized bed gasifier. Biomass Bioenergy. 1999;17(4):315–32.CrossRefGoogle Scholar
  7. 7.
    Yang B, Wu J, Zhao G, Wang H, Lu S. Multiplicity analysis in reactive distillation column using ASPEN PLUS. Chin J Chem Eng. 2006;14(3):301–8.CrossRefGoogle Scholar
  8. 8.
    More RK, Bulasara VK, Uppaluri R, Banjara VR. Optimization of crude distillation system using aspen plus: effect of binary feed selection on grass-root design. Chem Eng Res Des. 2010;88(2):121–34.CrossRefGoogle Scholar
  9. 9.
    Ongiro AO, Ugursal VI, Al Taweel AM, Blamire DK. Simulation of combined cycle power plants using the ASPEN PLUS shell. Heat Recovery Syst CHP. 1995;15(2):105–13.CrossRefGoogle Scholar
  10. 10.
    Zheng L, Furimsky E. ASPEN simulation of cogeneration plants. Energy Convers Manage. 2003;44(11):1845–51.CrossRefGoogle Scholar
  11. 11.
    Cimini S, Prisciandaro M, Barba D. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus. Waste Manage. 2005;25(2):171–5.CrossRefGoogle Scholar
  12. 12.
    Oexmann J, Hensel C, Kather A. Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. Int J Greenh Gas Control. 2008;2(4):539–52.CrossRefGoogle Scholar
  13. 13.
    Nikoo MB, Mahinpey N. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass Bioenergy. 2008;32(12):1245–54.CrossRefGoogle Scholar
  14. 14.
    Doherty W, Reynolds A, Kennedy D. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenergy. 2009;33(9):1158–67.CrossRefGoogle Scholar
  15. 15.
    Di Blasi C, Signorelli G, Di Russo C, Rea G. Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res. 1999;38(6):2216–24.CrossRefGoogle Scholar
  16. 16.
    Zanzi R, Sjostrom K, Bjornbom E. Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy. 2002;23(5):357–66.CrossRefGoogle Scholar
  17. 17.
    Schuster G, Loffler G, Weigl K, Hofbauer H. Biomass steam gasification – an extensive parametric modeling study. Bioresour Technol. 2001;77(1):71–9.CrossRefGoogle Scholar
  18. 18.
    Li XT, Grace JR, Lim CJ, Watkinson AP, Chen HP, Kim JR. Biomass gasification in a circulating fluidized bed. Biomass Bioenergy. 2004;26(2):171–93.CrossRefGoogle Scholar
  19. 19.
    Donolo G, Simon GD, Fermeglia M. Steady state simulation of energy production from biomass by molten carbonate fuel cells. J Power Sources. 2006;158(2):1282–9.CrossRefGoogle Scholar
  20. 20.
    Reed TB, Das A. Handbook of biomass downdraft gasifier engine systems. Golden: The Biomass Energy Foundation Press; 1988.Google Scholar
  21. 21.
    Mahishi MR, Goswami DY. Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrog Energy. 2007;32(16):3831–40.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg & Tsinghua University Press 2013

Authors and Affiliations

  • Zhongbin Fu
    • 1
  • Yaning Zhang
    • 1
  • Hui Liu
    • 1
  • Bo Zhang
    • 1
  • Bingxi Li
    • 1
  1. 1.School of Energy Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations