Relaxation and Heating Triggered by Nonlinear Kink Instability: Application to Solar Flares and Coronal Heating

  • Philippa K. Browning
  • Michael R. Bareford
  • Mykola Gordovskyy
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)

Abstract

Energy release and particle acceleration in kink-unstable twisted coronal loops are discussed. If the magnetic field in a coronal loop is sufficiently strongly twisted, it may become unstable to the ideal kink instability. We present results of 3D MHD simulations which show that in the nonlinear phase of the instability, current sheets form in which magnetic reconnection rapidly dissipates magnetic energy. In the later phase, the current sheet fragments. The energy release is well-modelled by a helicity conserving relaxation to a minimum energy state. We exploit this in order to calculate a distribution of energy-release events, and show how this is relevant to the solar coronal heating problem. Using test particle approach coupled with 3D MHD simulations, we also show how the electric fields associated with the fragmented currents sheet can efficiently accelerate charged particles. This has implications for the origin of high-energy particles in solar flares.

Keywords

Current Sheet Solar Flare Magnetic Reconnection Minimum Energy State Kink Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to the UK Science and Technology Facilities Council for financial support. Numerical simulations were undertaken using the UK MHD consortium facilities, funded by STFC and SRIF

References

  1. 1.
    Arber T D, Longbottom A W, Gerrard C L and Milne M 2001 J. Comp. Phys. 171 151Google Scholar
  2. 2.
    Bareford M R, Browning P K and Van der Linden R A M 2010 Astron. Astrophys. 521 A70Google Scholar
  3. 3.
    Bareford M R, Browning P K and Van der Linden R A M 2011 Sol. Phys. 273 93Google Scholar
  4. 4.
    Benz A 0 2008 Living Reviews in Solar Physics 5 1Google Scholar
  5. 5.
    Brown J C et al 2009 Astron. Astrophys. 508 993Google Scholar
  6. 6.
    Browning P K and Van der Linden R A M 2003 Astron. Astrophys. 400 355Google Scholar
  7. 7.
    Browning P K et al 2008 Astron. Astrophys. 485 837Google Scholar
  8. 8.
    Browning P K, Gordovskyy M, Stanier A, Hood A and Dalla S 2011 Plas. Phys. Cont. Fus. 53 124030Google Scholar
  9. 9.
    Gordovskyy M, Browning P K and Vekstein GE 2010a Astron. Astrophys. 519 A21Google Scholar
  10. 10.
    Gordovskyy M, Browning P K and Vekstein GE 2010b Astrophys. J. 720 1603Google Scholar
  11. 11.
    Gordovskyy M and Browning P K 2011a Astrophys. J. 729 101Google Scholar
  12. 12.
    Gordovskyy M and Browning P K 2012 Sol. Phys. in pressGoogle Scholar
  13. 13.
    Gordovskyy M, Browning P K, Bian N and Kontar E 2012 Sol. Phys. submittedGoogle Scholar
  14. 14.
    Heyvaerts J and Priest E R 1984 Astron. Astrophys. 137 63Google Scholar
  15. 15.
    Hood A W, Browning P K and Van der Linden R A M 2009 Astron. Astrophys. 506 913Google Scholar
  16. 16.
    Lin R P, Krucker S, Hurford G J et al 2003 Astrophys.J. 595 L66Google Scholar
  17. 17.
    Parker E N 1988 Ap. J. 330 474Google Scholar
  18. 18.
    Taylor J B 1974 Phys. Rev. Lett. 33 1139Google Scholar
  19. 19.
    Zharkova V et al 2011 Space Sci. Rev. 159 357Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philippa K. Browning
    • 1
  • Michael R. Bareford
    • 2
  • Mykola Gordovskyy
    • 1
  1. 1.Jodrell Bank Centre for AstrophysicsUniversity of ManchesterManchesterUK
  2. 2.School of Mathematical SciencesUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations