Observations of Electromagnetic Fluctuations at Ion Kinetic Scales in the Solar Wind

  • John J. Podesta
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


Wavelet techniques enable reduced power spectra and cross-spectra to be analyzed as a function of the angle θ BV formed by the scale dependent local mean magnetic field B 0 and the flow direction of the solar wind. These techniques allow the data along a line oriented at any angle θ BV to B 0 to be isolated and studied independently thus providing new information about the properties of the fluctuations along directions parallel, perpendicular, and at arbitrary angles to the local mean magnetic field. Recent investigations of the normalized magnetic helicity spectrum σ m using this technique have revealed the existence of two distinct populations of fluctuations near the proton inertial length scale, that is, at wavenumbers near \(kc/{\omega }_{pp} = 1\). These observations and their physical interpretation are briefly reviewed.


Solar Wind Spectral Break Inertial Range Solar Wind Flow Solar Wind Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Manfred Leubner and Zoltán Vörös for the invitation to the International Astrophysics Forum Alpbach 2011 held in Alpbach, Tyrol, Austria in June 2011. And to S. Peter Gary for helpful discussions and comments on the manuscript. This research was supported by NASA’s Solar and Heliophysics Program and the NSF Shine program.


  1. 1.
    Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 94, 215002 (2005). DOI 10.1103/PhysRevLett.94.215002Google Scholar
  2. 2.
    Bruno, R., Carbone, V.: The Solar Wind as a Turbulence Laboratory. Living Reviews in Solar Physics 2, 4 (2005)Google Scholar
  3. 3.
    Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J.: Anisotropy of Solar Wind Turbulence between Ion and Electron Scales. Phys. Rev. Lett. 104(25), 255002 (2010). DOI 10.1103/PhysRevLett.104.255002Google Scholar
  4. 4.
    Chen, C.H.K., Mallet, A., Schekochihin, A.A., Horbury, T.S., Wicks, R.T., Bale, S.D.: Three-Dimensional Structure of Solar Wind Turbulence. ArXiv e-prints:1109.2558 (2011)Google Scholar
  5. 5.
    Chen, C.H.K., Mallet, A., Yousef, T.A., Schekochihin, A.A., Horbury, T.S.: Anisotropy of alfvénic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. 415, 843 (2011). DOI 10.1111/ j.1365-2966.2011.18933.xGoogle Scholar
  6. 6.
    Dum, C.T., Marsch, E., Pilipp, W.: Determination of wave growth from measured distribution functions and transport theory. Journal of Plasma Physics 23, 91–113 (1980). DOI 10.1017/S0022377800022170Google Scholar
  7. 7.
    Forman, M.A., Wicks, R.T., Horbury, T.S.: Detailed Fit of ”Critical Balance” Theory to Solar Wind Turbulence Measurements. Astrophys. J. 733, 76 (2011). DOI 10.1088/0004-637X/733/2/76Google Scholar
  8. 8.
    Goldstein, M.L., Roberts, D.A., Fitch, C.A.: Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519–11538 (1994)Google Scholar
  9. 9.
    Goldstein, M.L., Roberts, D.A., Matthaeus, W.H.: Magnetohydrodynamic Turbulence In The Solar Wind. Annu. Rev. Astron. Astrophys. 33, 283–326 (1995). DOI 10.1146/annurev.aa.33.090195.001435Google Scholar
  10. 10.
    He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: Possible Evidence of Alfvén-cyclotron Waves in the Angle Distribution of Magnetic Helicity of Solar Wind Turbulence. Astrophys. J. 731, 85 (2011). DOI 10.1088/ 0004-637X/731/2/85Google Scholar
  11. 11.
    Horbury, T.S., Forman, M., Oughton, S.: Anisotropic Scaling of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 101(17), 175005 (2008). DOI 10.1103/PhysRevLett.101.175005Google Scholar
  12. 12.
    Horbury, T.S., Wicks, R.T., Chen, C.H.K.: Anisotropy in Space Plasma Turbulence: Solar Wind Observations. Space Sci. Rev. p. 293 (2011). DOI 10.1007/s11214-011-9821-9Google Scholar
  13. 13.
    Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., TenBarge, J.M.: The slow-mode nature of compressible wave power in solar wind turbulence. ArXiv e-prints:1106.4327 (2011)Google Scholar
  14. 14.
    Howes, G.G., Quataert, E.: On the Interpretation of Magnetic Helicity Signatures in the Dissipation Range Of Solar Wind Turbulence. Astrophys. J. 709, L49–L52 (2010). DOI 10.1088/2041-8205/709/1/L49Google Scholar
  15. 15.
    Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998). DOI 10.1029/97JA03394Google Scholar
  16. 16.
    Leamon, R.J., Smith, C.W., Ness, N.F., Wong, H.K.: Dissipation range dynamics: Kinetic Alfvén waves and the importance of βe. J. Geophys. Res. 104, 22331–22344 (1999). DOI 10.1029/ 1999JA900158Google Scholar
  17. 17.
    Leubner, M.P., Viñas, A.F.: Stability analysis of double-peaked proton distribution functions in the solar wind. J. Geophys. Res. 91, 13366–13372 (1986). DOI 10.1029/JA091iA12p13366Google Scholar
  18. 18.
    Luo, Q.Y., Wu, D.J.: Observations of Anisotropic Scaling of Solar Wind Turbulence. Astrophys. J. 714, L138–L141 (2010). DOI 10.1088/ 2041-8205/714/1/L138Google Scholar
  19. 19.
    Marsch, E.: Kinetic Physics of the Solar Wind Plasma, pp. 45–133. Springer-Verlag Berlin. (1991)Google Scholar
  20. 20.
    Marsch, E.: MHD Turbulence in the Solar Wind, pp. 159–241. Springer-Verlag Berlin. (1991)Google Scholar
  21. 21.
    Matthaeus, W.H., Goldstein, M.L.: Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011–6028 (1982)Google Scholar
  22. 22.
    Podesta, J.J.: Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). DOI 10.1088/0004-637X/698/2/986Google Scholar
  23. 23.
    Podesta, J.J.: Spectral anisotropy of solar wind turbulence in the inertial range and dissipation range. In: M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet & F. Pantellini (ed.) Twelfth International Solar Wind Conference, AIP Conference Series, vol. 1216, pp. 128–131 (2010). DOI 10.1063/1.3395817Google Scholar
  24. 24.
    Podesta, J.J., Gary, S.P.: Effect of Differential Flow of Alpha Particles on Proton Pressure Anisotropy Instabilities in the Solar Wind. Astrophys. J. 742, 41 (2011). DOI 10.1088/0004-637X/742/1/41Google Scholar
  25. 25.
    Podesta, J.J., Gary, S.P.: Magnetic Helicity Spectrum of Solar Wind Fluctuations as a Function of the Angle with Respect to the Local Mean Magnetic Field. Astrophys. J. 734, 15 (2011). DOI 10.1088/0004-637X/ 734/1/15Google Scholar
  26. 26.
    Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind. Phys. Rev. Lett. 105(23), 131101 (2010). DOI 10.1103/PhysRevLett.105.131101Google Scholar
  27. 27.
    Tu, C.Y., Marsch, E.: MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 73, 1–210 (1995). DOI 10.1007/BF00748891Google Scholar
  28. 28.
    Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. R. Astron. Soc. 407, L31–L35 (2010). DOI 10.1111/j.1745-3933.2010.00898.xGoogle Scholar
  29. 29.
    Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: Anisotropy of Imbalanced Alfvénic Turbulence in Fast Solar Wind. Phys. Rev. Lett. 106, 045001 (2011). DOI 10.1103/PhysRevLett.106. 045001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations