Acceleration of Energetic Particles through Reconnection of Weakly Stochastic Magnetic Field

  • Alexandre Lazarian
  • Grzegorz Kowal
  • B. Gouveia dal Pino
  • Ethan T. Vishniac
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


Astrophysical media are turbulent and therefore reconnection should be treated in the presence of pre-existing turbulence. We consider the model of fast magnetic reconnection in Lazarian and Vishniac (Astrophys J 517:700–718, 1999) which predicts that the rate of reconnection is controlled by the intensity and the injection scale of turbulent motions. We provide new evidence of successful testing of the model and argue that the model presents a generic set up for astrophysical reconnection events. We study particle acceleration that takes place in volumes of driven turbulence as well turbulent volumes in the presence of large scale reconnection. We show that in the latter case the acceleration is of the first order Fermi type thus supporting the model of acceleration proposed in Gouveia dal Pino and Lazarian (Astron Astrophys 44:845–853, 2005)


Solar Wind Magnetic Reconnection Reconnection Rate Reconnection Region Fast Reconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research of AL is supported by the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas. AL also acknowledged Humboldt Award at the Universities of Cologne and Bochum, as well as the hospitality of the International Institute of Physics (Brazil) and the Vilas Associate Award. GK and EMGDP acknowledge the support by the FAPESP grants no. 2006/50654-3 and 2009/50053-8, and the CNPq grant no. 300083/94-7. This research was also supported by the project TG-AST080005N through TeraGrid resources provided by Texas Advanced Computing Center (


  1. 1.
    Alfvén, H., Existence of Electromagnetic-Hydrodynamic Waves, Nature, 1942, 150, 405–406Google Scholar
  2. 2.
    Armstrong, J. W., Rickett, B. J., & Spangler, S. R., Electron density power spectrum in the local interstellar medium, 1995, ApJ, 443, 209–221Google Scholar
  3. 3.
    Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. 2009, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability, Phys. Plasmas, 16, 112102Google Scholar
  4. 4.
    Che, H., Drake, J. F., & Swisdak, M. 2011, A current filamentation mechanism for breaking magnetic field lines during reconnection, Nature, 474, 184Google Scholar
  5. 5.
    Chepurnov, A. & Lazarian, A., Extending the Big Power Law in the Sky with Turbulence Spectra from Wisconsin Hα Mapper Data, 2010, ApJ, 710, 853–858Google Scholar
  6. 6.
    Cho, J. and Lazarian, A., Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications, 2003, MNRAS, 345, 325–339Google Scholar
  7. 7.
    Ciaravella, A., & Raymond, J. C. 2008, ApJ, 686, 1372Google Scholar
  8. 8.
    de Gouveia dal Pino, E. M., & Lazarian, A., Production of the large scale superluminal ejections of the microquasar GRS 1915+105 by violent magnetic reconnection, A&A, 2005, 441, 845–853Google Scholar
  9. 9.
    Daughton, W., Scudder, J., & Karimabadi, H. 2006, Physics of Plasmas, 13, 072101Google Scholar
  10. 10.
    Daughton, W., Roytershteyn, V., Albright, B. J., Bowers, K., Yin, L., & Karimabadi, H. 2008, AGU Fall Meeting Abstracts, A1705Google Scholar
  11. 11.
    Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., & Bowers, K.,  2011, Nature Physics, in press.Google Scholar
  12. 12.
    Drake, J. F., Magnetic explosions in space, 2001, Nature, 410, 525–526Google Scholar
  13. 13.
    Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N., & Kobayashi, S., Formation of secondary islands during magnetic reconnection, 2006, GeoRL, 33, 13105.Google Scholar
  14. 14.
    Elmegreen, B. G., & Scalo, J. 2004, Annual Review Astronomy & Astrophysics, 42, 211Google Scholar
  15. 15.
    Eyink, G. L., Lazarian, A., & Vishniac, E. T., Fast Magnetic Reconnection and Spontaneous Stochasticity, 2011, ApJ, 743, 51Google Scholar
  16. 16.
    Goldreich, P. & Sridhar, S., Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence, 1995, ApJ, 438, 763–775Google Scholar
  17. 17.
    Jacobson, A. R., A possible plasma-dynamo mechanism driven by particle transport, 1984, Physics of Fluids, 27, 7–9Google Scholar
  18. 18.
    Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K., Numerical Tests of Fast Reconnection in Weakly Stochastic Magnetic Fields, 2009, ApJ, 700, 63–85Google Scholar
  19. 19.
    Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K., Reconnection Studies under Different Types of Turbulent Driving, 2012, Nonlin. Process Geophysics, submittedGoogle Scholar
  20. 20.
    Kowal, G., de Gouveia Dal Pino, E. M., & Lazarian, A., Magnetohydrodynamic Simulations of Reconnection and Particle Acceleration: Three-dimensional Effects, 2011, ApJ, 735, 102Google Scholar
  21. 21.
    Kowal, G., de Gouveia Dal Pino, E. M., & Lazarian, A., Acceleration in Turbulence and Weakly Stochastic Reconnection, 2012, Physical Review Letters, in pressGoogle Scholar
  22. 22.
    Lazarian, A., Eyink G., & Vishniac, E. 2012, Physics of Plasmas, 19, 012105Google Scholar
  23. 23.
    Lazarian, A., Theoretical approaches to particle propagation and acceleration in turbulent intergalactic medium, 2006, Astronomische Nachrichten, 327, 609Google Scholar
  24. 24.
    Lazarian, A., Obtaining Spectra of Turbulent Velocity from Observations, 2009, Space Science Review, 143, 357–385Google Scholar
  25. 25.
    Lazarian, A., & Opher, M. 2009, ApJ, 703, 8Google Scholar
  26. 26.
    Lazarian & Vishniac, Reconnection in a Weakly Stochastic Field, 1999, ApJ, 517, 700–718Google Scholar
  27. 27.
    Lazarian, A., Petrosian, V., Yan, H., & Cho, J., Physics of Gamma-Ray Bursts: Turbulence, Energy Transfer and Reconnection, 2003, arXiv:astro-ph/0301181Google Scholar
  28. 28.
    Lazarian, A., Vishniac, E. T., & Cho, J., Magnetic Field Structure and Stochastic Reconnection in a Partially Ionized Gas, 2004, ApJ, 603, 180–197Google Scholar
  29. 29.
    Lazarian, A., & Desiati, P., Magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail, 2010, ApJ, 722, 188–196Google Scholar
  30. 30.
    Lazarian, A., & Brunetti, G., Turbulence, reconnection and cosmic rays in galaxy clusters, 2011, Mem.S.A.It., 82, 636–647Google Scholar
  31. 31.
    Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K., Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, 1998, JGR, 103, 4775Google Scholar
  32. 32.
    Longair, M. S. 2011, High Energy Astrophysics by Malcolm S. Longair. Cambridge University Press, 2011. ISBN: 9780521756181,Google Scholar
  33. 33.
    Loureiro, N. F., Uzdensky, D. A., Schekochihin, A. A., Cowley, S. C. & Yousef, T. A., Turbulent magnetic reconnection in two dimensions, 2009, MNRAS, 399, L146–L150Google Scholar
  34. 34.
    McKee, Ch.F. & Ostriker, J.P., A theory of interstellar medium, 1977, Astrophys. J., 218, 148–169Google Scholar
  35. 35.
    Matthaeus, W. H. & Lamkin, S. L., Rapid magnetic reconnection caused by finite amplitude fluctuations, 1985, Physics of Fluids, 28, 303–307Google Scholar
  36. 36.
    Matthaeus, W. H. & Lamkin, S. L., Turbulent magnetic reconnection, Physics of Fluids, 1986, 29, 2513–2534Google Scholar
  37. 37.
    Parker, E. N., The Generation of Magnetic Fields in Astrophysical Bodies. I. The Dynamo Equations, ApJ, 1970, 162, 665–673.Google Scholar
  38. 38.
    Parker, E. N., Cosmical magnetic fields: Their origin and their activity, 1979, Oxford Clarendon Press; New York, Oxford University PressGoogle Scholar
  39. 39.
    Parker, E. N., A solar dynamo surface wave at the interface between convection and nonuniform rotation, 1993, ApJ, 408, 707–719Google Scholar
  40. 40.
    Petschek, H.E. 1964, The Physics of Solar Flares, AAS-NASA Symposium (NASA SP-50), ed. W. H. Hess (Greenbelt, MD: NASA), 425Google Scholar
  41. 41.
    Speiser, T. W., Conductivity without collisions or noise, 1970, Planetary and Space Science, 18, 613Google Scholar
  42. 42.
    Vishniak, E.T. & Lazarian, A., Reconnection in the interstellar medium, 1999, Astrophys. J., 511, 193–203Google Scholar
  43. 43.
    Yokoyama, T. & Shibata, K., Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun, 1995, Nature, 375, 42–44Google Scholar
  44. 44.
    Zhang, B. and Yan, H., The Internal-collision-induced Magnetic Reconnection and Turbulence (ICMART) Model of Gamma-ray Bursts, 2011, ApJ, 726, 90Google Scholar
  45. 45.
    Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K., & Alexandrova, O. 2010, Space Science Review, 156, 89Google Scholar
  46. 46.
    Zweibel, E. G., & Yamada, M. 2009, Annual Review of Astronomy & Astrophysics, 47, 291Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre Lazarian
    • 1
  • Grzegorz Kowal
    • 2
  • B. Gouveia dal Pino
    • 2
  • Ethan T. Vishniac
    • 3
  1. 1.Astronomy DepartmentUniversity of WisconsinMadisonUSA
  2. 2.Instituto de Astronomia, Geofísica e Ciências AtmosféricasUniversidade de São PauloSão PauloBrazil
  3. 3.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada

Personalised recommendations