Inversion of Physical Parameters in Solar Atmospheric Seismology

  • Iñigo Arregui
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


Magnetohydrodynamic (MHD) wave activity is ubiquitous in the solar atmosphere. MHD seismology aims to determine difficult to measure physical parameters in solar atmospheric magnetic and plasma structures by a combination of observed and theoretical properties of MHD waves and oscillations. This technique, similar to seismology or helio-seismology, demands the solution of two problems. The direct problem involves the computation of wave properties of given theoretical models. The inverse problem implies the calculation of unknown physical parameters, by means of a comparison of observed and theoretical wave properties. Solar atmospheric seismology has been successfully applied to different structures such as coronal loops, prominence plasmas, spicules, or jets. However, it is still in its infancy. Far more is there to come. We present an overview of recent results, with particular emphasis in the inversion procedure.


Coronal Loop Density Contrast Magnetic Flux Tube Kink Mode Period Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges the financial support received from the Spanish MICINN and FEDER funds under Grant No. AYA2006-07637. The author is also grateful to the Solar Physics Group members at Universitat de les Illes Balears, for many years of fruitful work.


  1. 1.
    Andries, J., Arregui, I., Goossens, M.: Determination of the Coronal Density Stratification from the Observation of Harmonic Coronal Loop Oscillations. Astrophys. J. Lett.  624, L57–L60 (2005)Google Scholar
  2. 2.
    Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., Van Doorsselaere, T.: Coronal loop oscillations: Calculation of resonantly damped MHD quasi-mode kink oscillations of longitudinally stratified loops. Astron. Astrophys.  430, 1109–1118 (2005)Google Scholar
  3. 3.
    Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: Coronal Seismology by Means of Kink Oscillation Overtones. Space Sci. Rev.  149, 3–29 (2009). DOI 10. 1007/s11214-009-9561-2Google Scholar
  4. 4.
    Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., Poedts, S.: MHD seismology of coronal loops using the period and damping of quasi-mode kink oscillations. Astron. Astrophys.  463, 333–338 (2007). DOI 10.1051/0004-6361:20065863Google Scholar
  5. 5.
    Arregui, I., Soler, R., Ballester, J.L., Wright, A. N.: Magnetohydrodynamic kink waves in two-dimensional non-uniform prominence threads. Astron. Astrophys.  533, A60 (2011). DOI 10.1051/0004-6361/201117477Google Scholar
  6. 6.
    Arregui, I., Terradas, J., Oliver, R., Ballester, J. L.: Damping of Fast Magnetohydrodynamic Oscillations in Quiescent Filament Threads. Astrophys. J. Lett.  682, L141–L144 (2008). DOI 10.1086/591081Google Scholar
  7. 7.
    Aschwanden, M. J., Fletcher, L., Schrijver, C. J., Alexander, D.: Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer. Astrophys. J.  520, 880 (1999)Google Scholar
  8. 8.
    Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., Van Doorsselaere, T.: Observational Tests of Damping by Resonant Absorption in Coronal Loop Oscillations. Astrophys. J.  598, 1375 (2003)Google Scholar
  9. 9.
    Díaz, A. J., Oliver, R., Ballester, J. L.: Prominence Thread Seismology Using the P 1/2P 2 Ratio. Astrophys. J.  725, 1742–1748 (2010). DOI 10.1088/0004-637X/ 725/2/1742Google Scholar
  10. 10.
    Erdélyi, R., Verth, G.: The effect of density stratification on the amplitude profile of transversal coronal loop oscillations. Astron. Astrophys.  462, 743–751 (2007). DOI 10.1051/0004-6361:20065693Google Scholar
  11. 11.
    Goossens, M.: Seismology of kink oscillations in coronal loops: Two decades of resonant damping. In: R. Erdélyi & C. A. Mendoza-Briceño (ed.) IAU Symposium, IAU Symposium, vol. 247, pp. 228–242 (2008). DOI 10.1017/S1743921308014920Google Scholar
  12. 12.
    Goossens, M., Andries, J., Arregui, I.: Damping of magnetohydrodynamic waves by resonant absorption in the solar atmosphere. Royal Society of London Philosophical Transactions Series A  364, 433–446 (2006). DOI 10.1098/rsta.2005.1708Google Scholar
  13. 13.
    Goossens, M., Andries, J., Aschwanden, M. J.: Coronal loop oscillations. An interpretation in terms of resonant absorption of quasi-mode kink oscillations. Astron. Astrophys.  394, L39 (2002)Google Scholar
  14. 14.
    Goossens, M., Arregui, I., Ballester, J. L., Wang, T. J.: Analytic approximate seismology of transversely oscillating coronal loops. Astron. Astrophys.  484, 851–857 (2008). DOI 10.1051/0004-6361:200809728Google Scholar
  15. 15.
    Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., van Noort, M.: Evidence of Traveling Waves in Filament Threads. Solar Phys.  246, 65–72 (2007). DOI 10.1007/s11207-007-0402-8Google Scholar
  16. 16.
    Lin, Y., Soler, R., Engvold, O., Ballester, J. L., Langangen, Ø., Oliver, R., Rouppe van der Voort, L. H. M.: Swaying Threads of a Solar Filament. Astrophys. J.  704, 870–876 (2009). DOI 10.1088/0004-637X/ 704/1/870Google Scholar
  17. 17.
    Nakariakov, V. M., Ofman, L.: Determination of the coronal magnetic field by coronal loop oscillations. Astron. Astrophys.  372, L53 (2001)Google Scholar
  18. 18.
    Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., Davila, J. M.: Trace observations of damped coronal loop oscillations: implications for coronal heating. Science  285, 862 (1999)Google Scholar
  19. 19.
    Okamoto, T. J., Tsuneta, S., Berger, T. E., Ichimoto, K., Katsukawa, Y., Lites, B. W., Nagata, S., Shibata, K., Shimizu, T., Shine, R. A., Suematsu, Y., Tarbell, T. D., Title, A. M.: Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence. Science  318, 1577– (2007). DOI 10.1126/science.1145447Google Scholar
  20. 20.
    Roberts, B., Edwin, P. M., Benz, A. O.: On coronal oscillations. Astrophys. J.  279, 857 (1984)Google Scholar
  21. 21.
    Roberts, B., Joarder, P. S.: Oscillations in quiescent prominences. In: G. Belvedere, M. Rodono, & G. M. Simnett (ed.) Advances in Solar Physics, Lecture Notes in Physics, Berlin Springer Verlag, vol. 432, pp. 173–178 (1994)Google Scholar
  22. 22.
    Ruderman, M. S., Roberts, B.: The Damping of Coronal Loop Oscillations. Astrophys. J.  577, 475–486 (2002). DOI 10.1086/342130Google Scholar
  23. 23.
    Soler, R., Arregui, I., Oliver, R., Ballester, J. L.: Seismology of Standing Kink Oscillations of Solar Prominence Fine Structures. Astrophys. J.  722, 1778–1792 (2010). DOI 10.1088/0004-637X/722/2/1778Google Scholar
  24. 24.
    Tandberg-Hanssen, E.: The nature of solar prominences. Dordrecht ; Boston : Kluwer, c1995. (1995)Google Scholar
  25. 25.
    Terradas, J., Arregui, I., Oliver, R., Ballester, J. L.: Transverse Oscillations of Flowing Prominence Threads Observed with Hinode. Astrophys. J. Lett.  678, L153–L156 (2008). DOI 10.1086/588728Google Scholar
  26. 26.
    Terradas, J., Arregui, I., Verth, G., Goossens, M.: Seismology of Transversely Oscillating Coronal Loops with Siphon Flows. Astrophys. J. Lett.  729, L22 (2011). DOI 10.1088/2041-8205/729/2/L22Google Scholar
  27. 27.
    Uchida, Y.: Diagnosis of Coronal Magnetic Structure by Flare-Associated Hydromagnetic Disturbances. PASJ  22, 341 (1970)Google Scholar
  28. 28.
    Van Doorsselaere, T., Andries, J., Poedts, S., Goossens, M.: Damping of Coronal Loop Oscillations: Calculation of Resonantly Damped Kink Oscillations of One-dimensional Nonuniform Loops. Astrophys. J.  606, 1223 (2004)Google Scholar
  29. 29.
    Van Doorsselaere, T., Nakariakov, V. M., Verwichte, E.: Coronal loop seismology using multiple transverse loop oscillation harmonics. Astron. Astrophys.  473, 959–966 (2007). DOI 10.1051/0004-6361:20077783Google Scholar
  30. 30.
    Van Doorsselaere, T., Nakariakov, V. M., Young, P. R., Verwichte, E.: Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS. Astron. Astrophys.  487, L17–L20 (2008). DOI 10.1051/ 0004-6361:200810186Google Scholar
  31. 31.
    Verth, G., Erdélyi, R.: Effect of longitudinal magnetic and density inhomogeneity on transversal coronal loop oscillations. Astron. Astrophys.  486, 1015–1022 (2008). DOI 10.1051/0004-6361:200809626Google Scholar
  32. 32.
    Verth, G., Erdélyi, R., Goossens, M.: Magnetoseismology: Eigenmodes of Torsional Alfvén Waves in Stratified Solar Waveguides. Astrophys. J.  714, 1637–1648 (2010). DOI 10.1088/0004-637X/714/2/1637Google Scholar
  33. 33.
    Verth, G., Erdélyi, R., Jess, D. B.: Refined Magnetoseismological Technique for the Solar Corona. Astrophys. J. Lett.  687, L45–L48 (2008). DOI 10.1086/593184Google Scholar
  34. 34.
    Verth, G., Goossens, M., He, J. S.: Magnetoseismological Determination of Magnetic Field and Plasma Density Height Variation in a Solar Spicule. Astrophys. J. Lett.  733, L15 (2011). DOI 10.1088/2041-8205/733/1/ L15Google Scholar
  35. 35.
    Verth, G., Van Doorsselaere, T., Erdélyi, R., Goossens, M.: Spatial magneto-seismology: effect of density stratification on the first harmonic amplitude profile of transversal coronal loop oscillations. Astron. Astrophys.  475, 341–348 (2007). DOI 10.1051/0004-6361:20078086Google Scholar
  36. 36.
    Verwichte, E., Aschwanden, M. J., Van Doorsselaere, T., Foullon, C., Nakariakov, V. M.: Seismology of a Large Solar Coronal Loop from EUVI/STEREO Observations of its Transverse Oscillation. Astrophys. J.  698, 397–404 (2009). DOI 10.1088/0004-637X/698/1/397Google Scholar
  37. 37.
    Verwichte, E., Foullon, C., Nakariakov, V. M.: Seismology of curved coronal loops with vertically polarised transverse oscillations. Astron. Astrophys.  452, 615–622 (2006)Google Scholar
  38. 38.
    Verwichte, E., Foullon, C., Van Doorsselaere, T.: Spatial Seismology of a Large Coronal Loop Arcade from TRACE and EIT Observations of its Transverse Oscillations. Astrophys. J.  717, 458–467 (2010). DOI 10.1088/0004-637X/717/1/458Google Scholar
  39. 39.
    Verwichte, E., Nakariakov, V. M., Ofman, L., Deluca, E. E.: Characteristics of transverse oscillations in a coronal loop arcade. Solar Phys.  223, 77–94 (2004). DOI 10.1007/s11207-004-0807-6Google Scholar
  40. 40.
    White, R.S., Verwichte, E.: Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO. Astron. Astrophys. 537, A49 (2012). DOI 10.1051/0004-6361/201118093Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations