Alfvénic Solitary and Shock Waves in Plasmas

  • Padma Kant Shukla
  • Bengt Eliasson
  • Lennart Stenflo
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


We present a review of nonlinear Alfvénic solitary and shock waves in a magnetized electron-ion plasma. The dynamics of these nonlinear dispersive Alfvén waves is governed by the two-fluid equations, coupled with Faraday’s and Ampère’s laws. First, we demonstrate the existence of large amplitude compressional Alfvénic solitary and shock waves propagating across the external magnetic field in a warm electron-ion magnetoplasma. It is found that these nonlinear structures can exist in well defined speed ranges above the Alfvén speed, and their widths are several times larger than the electron skin depths. Second, we study the formation of nonlinear slow magnetosonic solitary (SMS) waves propagating almost perpendicular to the external magnetic field direction. The propagation speed of the SMS waves is below the Alfvén speed and their width is a few ion skin depth in a collisionless magnetoplasma. The nonlinear dispersive Alfvén waves, as discussed here, can be associated with localized electromagnetic field excitations in magnetized laboratory and space plasmas that are composed of magnetized electrons and ions.


Shock Wave Hall Current Solitary Pulse Wave Electric Field Lower Hybrid Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Deutsche Forschungsgemeinschaft through the project SH21/3-2 of the Research Unit 1048.


  1. 1.
    H. Alfvén, Nature (London) 150, 405 (1942).Google Scholar
  2. 2.
    P. K. Shukla and J. M. Dawson, Astrophys. J. Lett. 276, L49 (1984).Google Scholar
  3. 3.
    J. H. Adlam and J. E. Allen, Phil. Mag. 3, 448 (1958).Google Scholar
  4. 4.
    D. A. Tidman and N. A. Krall, Shock Waves in Collisionless Plasmas (Wiley, New York, 1971), and references therein.Google Scholar
  5. 5.
    R. Z. Sagdeev, Rev. Mod. Phys. 51, 1 (1979).Google Scholar
  6. 6.
    C. M. C. Nairn, R. Bingham, and J. E. Allen, J. Plasma Phys. 71, 631 (2005).Google Scholar
  7. 7.
    G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, New York, 1974).Google Scholar
  8. 8.
    V. I. Karpman, Nonlinear Waves in Dispersive Media (Pergamon Press, 1975), pp. 101–104.Google Scholar
  9. 9.
    V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Gordon Breach, London, 1992).Google Scholar
  10. 10.
    P. K. Shukla, B. Eliasson, and L. Stenflo, Phys. Lett. A 375, 2371 (2011).Google Scholar
  11. 11.
    P. K. Shukla, B. Eliasson, and L. Stenflo, Eur. Phys. Lett. 95, 45001 (2011).Google Scholar
  12. 12.
    N. F. Kramer, Physics of Alfvén Wave (Wiley, Berlin, 2001).Google Scholar
  13. 13.
    P. A. Damiano, A. N. Wright, and J. F. McKenzie, Phys. Plasmas 16, 062901 (2009).Google Scholar
  14. 14.
    R. J. Stefant, Phys. Fluids 13, 440 (1971).Google Scholar
  15. 15.
    A. Hasegawa and C. Uberoi, The Alfvén wave, DOE/TIC No. 11197 (Technical Center, US Department of Energy, Washington, DC, 1982).Google Scholar
  16. 16.
    P. K. Shukla and L. Stenflo, in Nonlinear MHD Waves and Turbulence, Eds. T. Passot and P. L. Sulem (Springer, Berlin, 1999), pp. 1–30.Google Scholar
  17. 17.
    J. F. McKenzie and T. B. Doyle, Phys. Plasmas 9, 55 (2002).Google Scholar
  18. 18.
    K. Stasiewicz, P. K. Shukla, G. Gustafsson et al., Phys. Rev. Lett. 90, 085002 (2003).Google Scholar
  19. 19.
    B. B. Kadomtsev, “Cooperative Effects in Plasmas”, in Reviews of Plasma Physics, Edited by V. D. Shafranov (Kluwer Academic/Plenum Publishers, New York, 2001), pp. 189–192.Google Scholar
  20. 20.
    L. Stenflo, A. B. Shvartsburg, and J. Weiland, Phys. Lett. A 225, 113 (1997).Google Scholar
  21. 21.
    P. K. Shukla, B. Eliasson, M. Marklund, and R. Bingham, Phys. Plasmas 11, 2311 (2004).Google Scholar
  22. 22.
    D. Shaikh and P. K. Shukla, Phys. Rev. Lett. 102, 045004 (2009).Google Scholar
  23. 23.
    S. S. Moiseev and R. Z. Sagdeev, J. Nucl. Energy: Plasma Phys. 5, 43 (1963).Google Scholar
  24. 24.
    O. A. Pokhotelov, M. A. Balikhin, R. Z. Sagdeev, and R. A. Treumann, Phys. Rev. Lett. 95, 129501 (2005).Google Scholar
  25. 25.
    M. G. G. T. Taylor, C. P. Escoubet, H. Laasko, A. Masson, and M. L. Goldstein, The Cluster Mission: Space Plasma in Three Dimensions, in The Cluster Active Archive, Astrophys. Space Sc. Proceedings, Part 4, 309–330 (2010).Google Scholar
  26. 26.
    W. Gekelman, S. Vincena, B. Van Commernolle et al., Phys. Plasmas 18, 055501 (2011).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Padma Kant Shukla
    • 1
    • 2
  • Bengt Eliasson
    • 3
  • Lennart Stenflo
    • 4
  1. 1.International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and AstronomyRuhr University BochumBochumGermany, EU
  2. 2.Department of Mechanical and Aerospace Engineering and Center for Energy ResearchUniversity of California San DiegoLa JollaUSA
  3. 3.International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and AstronomyRuhr University BochumBochumGermany
  4. 4.Department of PhysicsLinköping UniversityLinköpingSweden

Personalised recommendations