Magnetohydrodynamic Waves in Partially Ionized Prominence Plasmas

  • Roberto Soler
  • Jose Luis Ballester
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)


Prominences or filaments are cool clouds of partially ionized plasma living in the solar corona. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD) waves. Existing observational evidence points out that these oscillatory motions are damped in short spatial and temporal scales by some still not well known physical mechanism(s). Since prominences are partially ionized plasmas, a potential mechanism able to damp these oscillations could be ion-neutral collisions. Here, we will review the work done on the effects of partial ionization on MHD waves in prominence plasmas.


Resonant Absorption Magnetic Flux Tube Magnetic Tube Magnetic Diffusion Small Amplitude Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



RS acknowledges support from a Marie Curie Intra-European Fellowship within the European Commission 7th Framework Program (PIEF-GA-2010-274716). RS and JLB acknowledge financial support from MICINN and FEDER funds through grant AYA2011-22486.


  1. 1.
    Y. Lin, O. Engvold, L. Rouppe van der Voort, J. Wiik, T. Berger, Solar Phys. 226, 239 (2005). DOI 10.1007/s11207-005-6876-3Google Scholar
  2. 2.
    P. Heinzel, U. Anzer, Astrophys. J. Lett. 643, L65 (2006). DOI 10. 1086/504980Google Scholar
  3. 3.
    Y. Lin, Space Sci. Rev. (2011). DOI 10.1007/s11214-010-9672-9Google Scholar
  4. 4.
    O. Engvold, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed. by D. Webb, B. Schmieder, D. Rust (Astronomical Society of the Pacific, San Francisco, 1998), ASP Conference Series, vol. 150, pp. 23–31Google Scholar
  5. 5.
    Y. Lin. Magnetic field topology inferred from studies of fine threads in solar filaments (2005)Google Scholar
  6. 6.
    O. Engvold, in Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology, IAU Symposia, vol. 247, ed. by R. Erdélyi, C. Mendoza-Briceño (Cambridge University Press, Cambridge; New York, 2008), IAU Symposia, vol. 247, pp. 152–157. DOI 10.1017/ S1743921308014816Google Scholar
  7. 7.
    S. Martin, Y. Lin, O. Engvold, Solar Phys. 250, 31 (2008). DOI 10.1007/s11207-008-9194-8Google Scholar
  8. 8.
    Y. Lin, S. Martin, O. Engvold, in Subsurface and Atmospheric Influences on Solar Activity, ASP Conference Series, vol. 383, ed. by R. Howe, R. Komm, K. Balasubramaniam, G. Petrie (Astronomical Society of the Pacific, San Francisco, 2008), ASP Conference Series, vol. 383, pp. 235–242Google Scholar
  9. 9.
    J. Leroy, in Proceedings of the Japan-France Seminar on Solar Physics, ed. by F. Moriyama, J. Henoux (Nihon Gakujutsu Shinkokai and CNRS, Tokyo, 1980), p. 155Google Scholar
  10. 10.
    V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Bréchot, Solar Phys. 154, 231 (1994)Google Scholar
  11. 11.
    V. Bommier, J. Leroy, in New Perspectives on Solar Prominences, ASP Conference Series, vol. 150, ed. by D. Webb, B. Schmieder, D. Rust (Astronomical Society of the Pacific, San Francisco, 1998), ASP Conference Series, vol. 150, pp. 434–438Google Scholar
  12. 12.
    Y. Lin, R. Soler, O. Engvold, J. Ballester, Ø. Langangen, R. Oliver, L. Rouppe van der Voort, Astrophys. J. 704, 870 (2009). DOI 10.1088/ 0004-637X/704/1/870Google Scholar
  13. 13.
    Z. Yi, O. Engvold, Solar Phys. 134, 275 (1991)Google Scholar
  14. 14.
    Z. Yi, O. Engvold, S. Keil, Solar Phys. 132, 63 (1991)Google Scholar
  15. 15.
    Y. Lin, O. Engvold, L. Rouppe van der Voort, M. van Noort, Solar Phys. 246, 65 (2007). DOI 10.1007/s11207-007-0402-8Google Scholar
  16. 16.
    I. Arregui, J.L. Ballester, Space Sci. Rev. 158, 169 (2011). DOI 10. 1007/s11214-010-9648-9Google Scholar
  17. 17.
    J. Terradas, R. Molowny-Horas, E. Wiehr, H. Balthasar, R. Oliver, J. Ballester, Astron. Astrophys. 393, 637 (2002). DOI 10.1051/ 0004-6361:20020967Google Scholar
  18. 18.
    R. Oliver, J. Ballester, Solar Phys. 206, 45 (2002). DOI 10.1023/A: 1014915428440Google Scholar
  19. 19.
    S. Patsourakos, J.C. Vial, Solar Phys. 208, 253 (2002)Google Scholar
  20. 20.
    M. Goossens, An Introduction to Plasma Astrophysics and Magnetohydrodynamics, Astrophysics and Space Science Library, vol. 294 (Kluwer, Dordrecht; Norwell, MA, 2003)Google Scholar
  21. 21.
    P. Forteza, R. Oliver, J. Ballester, M. Khodachenko, Astron. Astrophys. 461, 731 (2007). DOI 10.1051/0004-6361:20065900Google Scholar
  22. 22.
    B. Pandey, M. Wardle, Mon. Not. R. Astron. Soc. 385, 2269 (2008). DOI 10.1111/j.1365-2966.2008.12998.xGoogle Scholar
  23. 23.
    B. De Pontieu, P. Martens, H. Hudson, Astrophys. J. 558, 859 (2001). DOI 10.1086/322408Google Scholar
  24. 24.
    S. James, R. Erdélyi, B. De Pontieu, Astron. Astrophys. 406, 715 (2003). DOI 10.1051/0004-6361:20030685Google Scholar
  25. 25.
    M. Khodachenko, T. Arber, H. Rucker, A. Hanslmeier, Astron. Astrophys. 422, 1073 (2004). DOI 10.1051/0004-6361:20034207Google Scholar
  26. 26.
    J. Leake, T. Arber, M. Khodachenko, Astron. Astrophys. 442, 1091 (2005). DOI 10.1051/0004-6361:20053427Google Scholar
  27. 27.
    P. Forteza, R. Oliver, J. Ballester, Astron. Astrophys. 492, 223 (2008). DOI 10.1051/0004-6361:200810370Google Scholar
  28. 28.
    R. Soler, R. Oliver, J. Ballester, Astron. Astrophys. 512, A28 (2010). DOI 10.1051/0004-6361/200913478Google Scholar
  29. 29.
    P. Gouttebroze, N. Labrosse, Astron. Astrophys. 503, 663 (2009). DOI 10.1051/0004-6361/200811483Google Scholar
  30. 30.
    R. Soler, R. Oliver, J. Ballester, Astrophys. J. 699, 1553 (2009). DOI 10.1088/0004-637X/699/2/1553Google Scholar
  31. 31.
    R. Soler, R. Oliver, J. Ballester, Astrophys. J. 707, 662 (2009). DOI 10.1088/0004-637X/707/1/662Google Scholar
  32. 32.
    R. Soler, R. Oliver, J. Ballester, Astrophys. J. 726 (2011). DOI 10. 1088/0004-637X/726/2/102Google Scholar
  33. 33.
    P. Edwin, B. Roberts, Solar Phys. 88, 179 (1983). DOI 10.1007/ BF00196186Google Scholar
  34. 34.
    M. Goossens, J. Terradas, J. Andries, I. Arregui, J. Ballester, Astron. Astrophys. 503, 213 (2009). DOI 10.1051/0004-6361/200912399Google Scholar
  35. 35.
    I. Arregui, J. Terradas, R. Oliver, J. Ballester, Astrophys. J. Lett. 682, L141 (2008). DOI 10.1086/591081Google Scholar
  36. 36.
    R. Soler, R. Oliver, J. Ballester, M. Goossens, Astrophys. J. Lett. 695, L166 (2009). DOI 10.1088/0004-637X/695/2/L166Google Scholar
  37. 37.
    R. Soler, J. Andries, M. Goossens, Astron.Astrophys. 537, A84 (2012)Google Scholar
  38. 38.
    R. Soler, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. 722, 1778 (2010). DOI 10.1088/0004-637X/722/2/1778Google Scholar
  39. 39.
    J. Ballester, E. Priest, Astron. Astrophys. 225, 213 (1989)Google Scholar
  40. 40.
    M. Rempel, D. Schmitt, W. Glatzel, Astron. Astrophys. 343, 615 (1999)Google Scholar
  41. 41.
    A. Díaz, R. Oliver, J. Ballester, Astrophys. J. 580, 550 (2002). DOI 10.1086/343039Google Scholar
  42. 42.
    J. Terradas, I. Arregui, R. Oliver, J. Ballester, Astrophys. J. Lett. 678, L153 (2008). DOI 10.1086/588728Google Scholar
  43. 43.
    R. Soler, M. Goossens, Astron. Astrophys. 531 (2011). DOI 10.1051/ 0004-6361/201116536Google Scholar
  44. 44.
    I. Arregui, R. Soler, J.L. Ballester, A.N. Wright, Astron. Astrophys. 533, A60 (2011). DOI 10.1051/0004-6361/201117477Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Plasma Astrophysics, Department of MathematicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Departament de FísicaUniversitat de les Illes BalearsPalmaSpain

Personalised recommendations