Advertisement

Alfvén Waves in Dusty Proto-Stellar Accretion Disks

  • Aline de Almeida Vidotto
  • Vera Jatenco-Pereira
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 33)

Abstract

The magneto-rotational instability (MRI) is believed to be the mechanism responsible for a magneto-hydrodynamic (MHD) turbulence that could lead to the accretion observed in proto-stellar accretion disks. A minimum amount of ionization in this medium is necessary for the MRI to take place. In this work we study the role of MHD waves as an additional source of heating in disks. As dust is present in this medium, we suggest that the Alfvén waves are damped by the dust-cyclotron mechanism of damping. We present a disk model with two heating mechanisms: the “anomalous” viscosity considered in terms of the α-parameterization and the damping of Alfvén waves. We show that the waves can increase the temperature of the disk and can reduce the quiescent region.

Keywords

Energy Flux Dusty Plasma Magnetic Field Intensity Disk Model Charged Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the Brazilian agencies FAPESP (under grant 04/13846-6) and CNPq (under grant 304184/2010-1) for financial support.

References

  1. 1.
    Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214Google Scholar
  2. 2.
    Cramer, N., Verheest, F., & Vladimirov, S. 2002, Phys. Plasmas, 9, 4845Google Scholar
  3. 3.
    Falceta-Gonçalves, D., Vidotto, A. A., & Jatenco-Pereira, V. 2006, MNRAS, 368, 1145Google Scholar
  4. 4.
    Gammie, C. F. 1996, ApJ, 457, 355Google Scholar
  5. 5.
    Leprovost, N., & Kim, E.-J. 2007, ApJ, 654, 1166Google Scholar
  6. 6.
    Mathis, J., Rumpl, W., & Nordsiek, K. 1977, ApJ, 217, 425Google Scholar
  7. 7.
    Pelletier, G., Lemoine, M., & Marcowith, A. 2006, A&A, 453, 181Google Scholar
  8. 8.
    Pillip, W., Morfill, G., Hartquist, T., & Havnes, O. 1987, ApJ, 314, 341Google Scholar
  9. 9.
    Sicilia-Aguilar, A., Hartmann, L. W., Fürész, G., Henning, T., Dullemond, C., & Brandner, W. 2006, AJ, 132, 2135Google Scholar
  10. 10.
    Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
  11. 11.
    Shukla, P. 1992, Phys. Scr., 45, 504Google Scholar
  12. 12.
    Tu, C.-Y., Marsch, E., & Thieme, K. M. 1989, JGR, 94, 11739Google Scholar
  13. 13.
    Vasconcelos, M. J., Jatenco-Pereira, V., & Opher, R. 2000, ApJ, 534, 967Google Scholar
  14. 14.
    Vidotto, A. A., & Jatenco-Pereira, V. 2006, ApJ, 639, 416Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aline de Almeida Vidotto
    • 1
  • Vera Jatenco-Pereira
    • 2
  1. 1.SUPA, School of Physics and AstronomyUniversity of St. AndrewsSt. AndrewsUK
  2. 2.Institute of Astronomy, Geophysics and Atmosferic SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations