Advertisement

A Small Depth-16 Circuit for the AES S-Box

  • Joan Boyar
  • René Peralta
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 376)

Abstract

New techniques for reducing the depth of circuits for cryptographic applications are described. These techniques also keep the number of gates quite small. The result, when applied to the AES S-Box, is a circuit with depth 16 and only 128 gates. For the inverse, it is also depth 16 and has only 127 gates. There is a shared middle part, common to both the S-Box and its inverse, consisting of 63 gates. The best previous comparable design for the AES S-Box has depth 22 and size 148 [12].

Keywords

Advance Encryption Standard Linear Component Greedy Heuristic Nonlinear Component Combinational Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyar, J., Peralta, R.: A New Combinational Logic Minimization Technique with Applications to Cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–189. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis ( ∧ , ⊕ , 1). Theoretical Computer Science 235, 43–57 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Canright, D.: A very compact Rijndael S-box. Tech. Rep. NPS-MA-05-001, Naval Postgraduate School (2005)Google Scholar
  5. 5.
    Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. IACR Cryptology ePrint Archive 2011, 475 (2011)Google Scholar
  6. 6.
    Fuhs, C., Schneider-Kamp, P.: Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 71–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Fuhs, C., Schneider-Kamp, P.: Optimizing the AES S-Box using SAT. In: Proceedings of the 8th International Workshop on the Implementation of Logics (2010)Google Scholar
  8. 8.
    Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lupanov, O.B.: A method of circuit synthesis. Izvestia V.U.Z. Radiofizika 1, 120–140 (1958)Google Scholar
  10. 10.
    Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    NIST: Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute of Standards and Technology (November 2001)Google Scholar
  12. 12.
    Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed Bases for Efficient Inversion in \(\mathbb{F}(((2^2)^2)^2)\) and Conversion Matrices of Subbytes of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Paar, C.: Some remarks on efficient inversion in finite fields. In: 1995 IEEE International Symposium on Information Theory, p. 58 (1995)Google Scholar
  14. 14.
    Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: 1997 IEEE International Symposium on Information Theory, p. 250 (1997)Google Scholar
  15. 15.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Tech. J. 28, 59–98 (1949)MathSciNetGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Joan Boyar
    • 1
  • René Peralta
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkDenmark
  2. 2.Information Technology LaboratoryNISTUSA

Personalised recommendations