Evolution of Cellular Pattern Formation during Early Nematode Embryogenesis

  • Einhard Schierenberg


Genetic divergence appears to be high among nematodes, while morphological variation is low. To better understand how this fits together and to trace the evolution of development in this phylum we started a comprehensive comparative survey of embryogenesis comprising all branches of the phylogenetic tree. We find considerable differences, in particular between basal and more derived species. This review focuses on cellular pattern formation and cell fate assignment during early development. Our data indicate that evolution of nematodes went from indeterminate early cleavage without initial polarity to invariant cell lineages with establishment of polarity before first division. Different ways to establish this polarity and the variety of taxon-specific spatial arrangements of cells require modifications with respect to cell specification processes and the underlying molecular mechanisms. We conclude that the “standard pattern” as found in the model system C. elegans constitutes only one of the many ways to construct a nematode and discuss the adaptive value of the observed developmental variations.


Inductive Interaction Spindle Orientation Caenorhabditis Species Ascaris Development Cleavage Spindle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Jens Schulze for discussion, Vera Lahl and Ndifon Nsah for images, and Randy Cassada for helpful comments on the manuscript.


  1. Aleshin VV, Kedrova OS, Milyutina IA, Vladychenskaya NS, Petrov NB (1998) Relationships among nematodes based on the analysis of 18S rRNA gene sequences: molecular evidence for monophyly of Chromadorian and Secernentean nematodes. Russ J Nematol 6:175–184Google Scholar
  2. Balzer F (1964) Theodor Boveri. Science 144:809–815CrossRefGoogle Scholar
  3. Balzer F (1967) Theodor Boveri: life and work of a great biologist, 1862–1915. University of California Press, BerkeleyGoogle Scholar
  4. Boveri T (1899) Die Entwicklung von Ascaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. In: Festschrift für C v Kupffer. Gustav Fischer Verlag, Jena, pp 383–430Google Scholar
  5. Boveri T (1910) Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Zugleich ein Beitrag zur Frage qualitativ ungleicher Chromosomenteilung. In: Festschrift für R. Hertwig, vol 3. Fischer Verlag, Jena, pp 133–214Google Scholar
  6. Bowerman B, Eaton BA, Priess JR (1992) skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 68:1061–1075PubMedCrossRefGoogle Scholar
  7. Brauchle M, Kiontke K, MacMenamin P, Fitch DH, Piano F (2009) Evolution of early embryogenesis in rhabditid nematodes. Dev Biol 335:253–262PubMedCrossRefGoogle Scholar
  8. Cheng NN, Kirby CM, Kemphues KJ (1995) Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139:549–559PubMedGoogle Scholar
  9. Coghlan A, Wolfe KH (2002) Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 12:857–867PubMedCrossRefGoogle Scholar
  10. Costello DP (1961) On the orientation of centrioles in dividing cells, and its significance: a new contribution to spindle mechanics. Biol Bull 120:285–312CrossRefGoogle Scholar
  11. De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 1–30CrossRefGoogle Scholar
  12. Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A 101:15386–15391PubMedCrossRefGoogle Scholar
  13. Eisenmann DM (2005) Wnt signaling. In: The C. elegans Research Community (eds.) Wormbook. doi/ 10.1895/wormbook.1.7.1,
  14. Goldstein B, Frisse LM, Thomas WK (1998) Embryonic axis specification in nematodes: evolution of the first step in development. Curr Biol 8:157–160PubMedCrossRefGoogle Scholar
  15. Gönczy P, Rose LS (2005) Asymmetric cell division and axis formation in the embryo. In: The C. elegans Research Community (eds) Wormbook. doi: 10.1895/wormbook.1.30.1,
  16. Greenwald I, Rubin GM (1992) Making a difference: the role of cell–cell interactions in establishing separate identities for equivalent cells. Cell 68:271–281PubMedCrossRefGoogle Scholar
  17. Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800PubMedCrossRefGoogle Scholar
  18. Houthoofd W, Jacobsen K, Mertens C, Vangestel S, Coomans A, Borgonie G (2003) Embryonic cell lineage of the marine nematode Pellioditis marina. Dev Biol 258:57–69PubMedCrossRefGoogle Scholar
  19. Houthoofd W, Willems M, Jacobsen K, Coomans A, Borgonie G (2008) The embryonic cell lineage of the nematode Rhabditophanes sp. Int J Dev Biol 52:963–967PubMedCrossRefGoogle Scholar
  20. Hyman AA, White JG (1987) Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J Cell Biol 105:2123–2135PubMedCrossRefGoogle Scholar
  21. Keating HH, White JG (1998) Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 111:3027–3033PubMedGoogle Scholar
  22. Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DH (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 101:9003–9008PubMedCrossRefGoogle Scholar
  23. Lahl V (2007) Comparative and experimental analysis of embryogenesis in free-living and parasitic nematodes (in German). PhD thesis, University of Giessen, GermanyGoogle Scholar
  24. Lahl V, Halama C, Schierenberg E (2003) Comparative and experimental embryogenesis of Plectidae (Nematoda). Dev Genes Evol 213:18–27PubMedGoogle Scholar
  25. Lahl V, Sadler B, Schierenberg E (2006) Egg development in parthenogenetic nematodes: variations in meiosis and axis formation. Int J Dev Biol 50:393–398PubMedCrossRefGoogle Scholar
  26. Lahl V, Schulze J, Schierenberg E (2009) Embryonic pattern formation in the nematode Diploscapter coronatus. Int J Dev Biol 53:507–515PubMedCrossRefGoogle Scholar
  27. Laufer JS, Bazzicalupo P, Wood WB (1980) Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell 19:569–577PubMedCrossRefGoogle Scholar
  28. Lin KT, Broitman-Maduro G, Hung WW, Cervantes S, Maduro MF (2009) Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 325:296–306PubMedCrossRefGoogle Scholar
  29. Malakhov VV (1994) Nematodes. Structure, development, classification and phylogeny. Smithsonian Institution Press, WashingtonGoogle Scholar
  30. Müller H (1903) Beitrag zur Embryonalentwicklung von Ascaris megalocephala. Zoologica 41:1–27Google Scholar
  31. Nigon V (1965) Devéloppement et reproduction des nématodes. In: Grassé PP (ed) Traité de Zoologie, vol 4. Masson, Paris, pp 218–294Google Scholar
  32. Priess JR (2005) Notch signaling in the C. elegans embryo. In: The C. elegans Research Community (eds) Wormbook. doi: 10.1895/wormbook.1.4.1,
  33. Priess JR, Hirsh DI (1986) Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol 117:156–173PubMedCrossRefGoogle Scholar
  34. Schierenberg E (1987) Reversal of cellular polarity and early cell–cell interaction in the embryos of Caenorhabditis elegans. Dev Biol 122:452–463PubMedCrossRefGoogle Scholar
  35. Schierenberg E (2001) Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. BioEssays 23:841–847PubMedCrossRefGoogle Scholar
  36. Schierenberg E (2005) Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Dev Genes Evol 215:103–108PubMedCrossRefGoogle Scholar
  37. Schierenberg E (2006) Embryological variation during nematode development. In: The C. elegans Research Community (eds) WormBook. doi: 10.1895/wormbook.1.55.1,
  38. Schleip W (1929) Die Determination der Primitiventwicklung. Acad Verlagsanstalt, LeipzigGoogle Scholar
  39. Schnabel R, Bischoff M, Hintze A, Schulz AK, Hejnol A, Meinhardt H, Hutter H (2006) Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Dev Biol 294:418–431PubMedCrossRefGoogle Scholar
  40. Schulze J, Schierenberg E (2008) Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Dev Biol 315:426–436PubMedCrossRefGoogle Scholar
  41. Schulze J, Schierenberg E (2009) Embryogenesis of Romanomermis culicivorax: an alternative way to construct a nematode. Dev Biol 334:10–21PubMedCrossRefGoogle Scholar
  42. Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18. doi: 10.1186/2041-9139-2-18 PubMedCrossRefGoogle Scholar
  43. Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120:2823–2834PubMedGoogle Scholar
  44. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1(2):e45. doi: 10.1371/journal.pbio.0000045 PubMedCrossRefGoogle Scholar
  45. Stevens NM (1909) The effect of ultra-violet light upon the developing eggs of Ascaris megalocephala. Arch Entw Mech 27:622–639Google Scholar
  46. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119PubMedCrossRefGoogle Scholar
  47. Théry M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18:648–657PubMedCrossRefGoogle Scholar
  48. Voronov DA (1999) The embryonic development of Pontonema vulgare (Enoplida: Oncholaimidae) with a discussion of nematode phylogeny. Russ J Nematol 7:105–114Google Scholar
  49. Voronov DA, Panchin YV (1998) Cell lineage in marine nematode Enoplus brevis. Development 125:143–150PubMedGoogle Scholar
  50. Wiegner O, Schierenberg E (1999) Regulative development in a nematode embryo: a hierarchy of cell fate transformations. Dev Biol 215:1–12PubMedCrossRefGoogle Scholar
  51. Zhao Z, Boyle TJ, Bao Z, Murray JI, Mericle B, Waterston RH (2008) Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Dev Biol 314:93–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Cologne BiocenterUniversity of CologneKölnGermany

Personalised recommendations