Skip to main content

Preimplantation Mouse Embryo: Developmental Fate and Potency of Blastomeres

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

During the past decade we have witnessed great progress in the understanding of cellular, molecular, and epigenetic aspects of preimplantation mouse development. However, some of the issues, especially those regarding the nature and regulation of mouse development, are still unresolved and controversial and raise heated discussion among mammalian embryologists. This chapter presents different standpoints and various research approaches aimed at examining the fate and potency of cells (blastomeres) of mouse preimplantation embryo. In dealing with this subject, it is important to recognize the difference between the fate of blastomere and the prospective potency of blastomere, with the first being its contribution to distinct tissues during normal development, and the second being a full range of its developmental capabilities, which can be unveiled only by experimental perturbation of the embryo. Studies of the developmental potential and the fate of blastomeres are of the utmost importance as they may lead to future clinical application in reproductive and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AlarcĂłn VB, Marikawa Y (2003) Deviation of the blastocyst axis from the first cleavage plane does not affect the quality of mouse postimplantation development. Biol Reprod 69:1208–1212

    PubMed  Google Scholar 

  • AlarcĂłn VB, Marikawa Y (2005) Unbiased contribution of the first two blastomeres to mouse blastocyst development. Mol Reprod Dev 72:354–361

    PubMed  Google Scholar 

  • AlarcĂłn VB, Marikawa Y (2008) Spatial alignment of the mouse blastocyst axis across the first cleavage plane is caused by mechanical constraint rather than developmental bias among blastomeres. Mol Reprod Dev 75:1143–1153

    PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    PubMed  CAS  Google Scholar 

  • Chroscicka A, Komorowski S, Maleszewski M (2004) Both blastomeres of the mouse 2-cell embryo contribute to the embryonic portion of the blastocyst. Mol Reprod Dev 68:308–312

    PubMed  CAS  Google Scholar 

  • Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2005) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439:216–219

    PubMed  Google Scholar 

  • Davies TJ, Gardner RL (2002) The plane of first cleavage is not related to the distribution of sperm components in the mouse. Hum Reprod 17:2368–2379

    PubMed  CAS  Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–4231

    PubMed  CAS  Google Scholar 

  • Dziadek M (1979) Cell differentiation in isolated inner cell masses of mouse blastocysts in vitro: onset of specific gene expression. J Embryol Exp Morphol 53:367–379

    PubMed  CAS  Google Scholar 

  • Fleming TP, Warren PD, Chisholm JC, Johnson MH (1984) Trophectodermal processes regulate the expression of totipotency within the inner cell mass of the mouse expanding blastocyst. J Embryol Exp Morphol 84:63–90

    PubMed  CAS  Google Scholar 

  • Fujimori T, Kurotaki Y, Miyazaki J, Nabeshima Y (2003) Analysis of cell lineage in two- and four-cell mouse embryos. Development 130:5113–5122

    PubMed  CAS  Google Scholar 

  • Gardner RL (1985) Regeneration of endoderm from primitive ectoderm in the mouse embryo: fact or artifact. J Embryol Exp Morphol 88:303–326

    PubMed  CAS  Google Scholar 

  • Gardner RL (1997) The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse. Development 124:289–301

    PubMed  CAS  Google Scholar 

  • Gardner RL (2001) Specification of embryonic axes begins before cleavage in normal mouse development. Development 128:839–847

    PubMed  CAS  Google Scholar 

  • Gardner RL, Davies TJ (2003) Is the plane of first cleavage related to the point of sperm entry in the mouse? Reprod Biomed Online 6:157–160

    PubMed  CAS  Google Scholar 

  • Gardner RL, Johnson MH (1972) An investigation of inner cell mass and trophoblast tissues following their isolation from the mouse blastocyst. J Embryol Exp Morphol 28:279–312

    PubMed  CAS  Google Scholar 

  • Gardner R, Rossant J (1979) Investigation of the fate of 4,5 day post-coitum mouse inner cell mass by blastocyst injection. J Embryol Exp Morphol 52:141–152

    PubMed  CAS  Google Scholar 

  • Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, Devroey P, Tournaye H, Liebaers I, Van de Velde H (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24:2709–2717

    PubMed  CAS  Google Scholar 

  • GonzĂĄlez S, Ibåñez E, SantalĂł J (2011) Influence of early fate decisions at the two-cell stage on the derivation of mouse embryonic stem cell lines. Stem Cell Res 7:54–65

    PubMed  Google Scholar 

  • Gray D, Plusa B, Piotrowska K, Na J, Tom B, Glover DM, Zernicka-Goetz M (2004) First cleavage of the mouse embryo responds to change in egg shape at fertilization. Curr Biol 14:397–405

    PubMed  CAS  Google Scholar 

  • Guo G, Huss M, Tong GQ, Wang C, Sun LL, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685

    Google Scholar 

  • Handyside AH (1978) Time of commitment of inside cells isolated from preimplantation mouse embryos. J Embryol Exp Morphol 45:37–53

    PubMed  CAS  Google Scholar 

  • Handyside AH, Barton SC (1977) Evaluation of the technique of immunosurgery for the isolation of inner cell masses from mouse blastocysts. J Embryol Exp Morphol 37:217–226

    PubMed  CAS  Google Scholar 

  • Hansis C, Grifo JA, Tang Y, Krey LC (2002) Assessment of beta-HCG, beta-LH mRNA and ploidy in individual human blastomeres. Reprod Biomed Online 5:156–161

    PubMed  CAS  Google Scholar 

  • Hansis C, Grifo JA, Krey LC (2004) Candidate lineage marker genes in human preimplantation embryos. Reprod Biomed Online 8:577–583

    PubMed  CAS  Google Scholar 

  • Hardy K, Martin KL, Leese HJ, Winston RM, Handyside AH (1990) Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage. Hum Reprod 5:708–714

    PubMed  CAS  Google Scholar 

  • Hiiragi T, Solter D (2004) First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–364

    PubMed  CAS  Google Scholar 

  • Hiiragi T, Alarcon VB, Fujimori T, Louvet-Vallee S, Maleszewski M, Marikawa Y, Maro B, Solter D (2006) Where do we stand now? Mouse early embryo patterning meeting in Freiburg, Germany. Int J Dev Biol 50:581–586

    PubMed  Google Scholar 

  • Hogan B, Tilly R (1978a) In vitro development of inner cell masses isolated immunosurgically from mouse blastocysts. II. Inner cell masses from 3,5- to 4,0-day p.c. blastocysts. J Embryol Exp Morphol 45:107–21

    PubMed  CAS  Google Scholar 

  • Hogan B, Tilly R (1978b) In vitro development of inner cell masses isolated immunosurgically from mouse blastocysts. I. Inner cell masses from 3,5-day p.c. blastocysts incubated for 24h before immunosurgery. J Embryol Exp Morphol 45:93–105

    PubMed  CAS  Google Scholar 

  • Handyside AH, Kontogianni EH, Hardy K, Winston RM (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344:768–770

    PubMed  CAS  Google Scholar 

  • James RM, Klerkx AHEM, Keighren M, Flockhart JH, West JD (1995) Restricted distribution of tetraploid cells in mouse tetraploid <==> diploid chimaeras. Dev Biol 167:213–226

    PubMed  CAS  Google Scholar 

  • Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706

    PubMed  CAS  Google Scholar 

  • Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80

    PubMed  CAS  Google Scholar 

  • Johnson WH, Loskutoff NM, Plante Y, Betteridge KJ (1995) Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec 137:15–16

    PubMed  CAS  Google Scholar 

  • Kelly SJ (1975) Studies of the potency of the early cleavage blastomeres of the mouse. In: Balls M, Wild AE (eds) The early development of mammals. Cambridge University Press, Cambridge, pp 97–105

    Google Scholar 

  • Kelly SJ (1977) Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool 200:365–376

    PubMed  CAS  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2:1963–1972

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Tarkowski AK (1985) Electrofusion of mouse blastomeres. Exp Cell Res 157:561–566

    PubMed  CAS  Google Scholar 

  • Kurimoto K, Kabuta Y, Ohinata Y, Ono Y, Uno KD, Hamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42

    PubMed  Google Scholar 

  • Kurotaki Y, Hatta K, Nakao K, Nabeshima Y, Fujimori T (2007) Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316:719–723

    PubMed  CAS  Google Scholar 

  • Louvet-Vallee S, Dard N, Santa-Maria A, Aghion J, Maro B (2001) A major posttranslational modification of ezrin takes place during epithelial differentiation in the early mouse embryo. Dev Biol 231:190–200

    PubMed  CAS  Google Scholar 

  • Louvet-VallĂ©e S, Vinot S, Maro B (2005) Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr Biol 15:464–469

    PubMed  Google Scholar 

  • Markert CL, Petters RM (1978) Manufactured hexaparental mice show that adults are derived from three embryonic cells. Science 202:56–58

    PubMed  CAS  Google Scholar 

  • MacKay GE, West JD (2005) Fate of tetraploid cells in 4n↔2n chimeric mouse blastocysts. Mech Dev 122:1266–1281

    PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    PubMed  CAS  Google Scholar 

  • McLaren A (1976) Mammalian chimaeras. Cambridge University Press, Cambridge, London, New York, Melbourne

    Google Scholar 

  • Mintz B (1962) Formation of genotypically mosaic mouse embryos. Am Zool 2:432

    Google Scholar 

  • Mintz B (1964) Formation of genetically mosaic mouse embryos and early development of “lethal (t 12/t 12)-normal” mosaics. J Exp Zool 157:273–292

    PubMed  CAS  Google Scholar 

  • Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le-Garrec JF, Zernicka-Goetz M (2009) Active cell movements coupled to positional induction are involved in lineage segregation in the mouse. Dev Biol 331:210–221

    PubMed  CAS  Google Scholar 

  • Moore NW, Adams CE, Rowson LEA (1968) Developmental potential of single blastomeres of the rabbit egg. J Reprod Fertil 17:527–531

    PubMed  CAS  Google Scholar 

  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107:6364–6369

    PubMed  CAS  Google Scholar 

  • Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T (2005) Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:1081–1092

    PubMed  CAS  Google Scholar 

  • Mullen RJ, Whitten WK, Carter SC (1970) Studies on chimeric mice and half-embryos. In: Annual report of the Jackson Laboratory. Bar harbor, Maine, pp 67–68

    Google Scholar 

  • Nichols J, Gardner RL (1984) Heterogeneous differentiation of external cells in individual isolated early mouse inner cell masses in culture. J Embryol Exp Morphol 80:225–240

    PubMed  CAS  Google Scholar 

  • OzdzeƄski W, Szczesny E, Tarkowski AK (1997) Postimplantation development of mouse blastocysts with two separate inner cell masses. Anat Embryol (Berl) 195:467–471

    Google Scholar 

  • Pedersen RA, Spindle AI, Wiley LM (1977) Regeneration of endoderm by ectoderm isolated from mouse blastocysts. Nature 270:453–457

    Google Scholar 

  • Pierce GB, Arechaga J, Muro C, Wells RS (1988) Differentiation of ICM cells into trophectoderm. Am J Pathol 132:356–364

    PubMed  CAS  Google Scholar 

  • Pinyopummin A, Takahashi Y, Hishinuma M, Kanagawa H (1994) Development of single blastomeres from 4-cell stage embryos after aggregation with parthenogenones in mice. Jpn J Vet Res 42:119–126

    PubMed  CAS  Google Scholar 

  • Piotrowska K, Zernicka-Goetz M (2001) Role for sperm in spatial patterning of the early mouse embryo. Nature 409:517–521

    PubMed  CAS  Google Scholar 

  • Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M (2001) Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 128:3739–3748

    PubMed  CAS  Google Scholar 

  • Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development 132:479–490

    PubMed  CAS  Google Scholar 

  • Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13:117–123

    PubMed  CAS  Google Scholar 

  • Plusa B, Grabarek JB, Piotrowska K, Glover DM, Zernicka-Goetz M (2002a) Site of the previous meiotic division defines cleavage orientation in the mouse embryo. Nat Cell Biol 4:811–815

    PubMed  CAS  Google Scholar 

  • Plusa B, Piotrowska K, Zernicka-Goetz M (2002b) Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote. Genesis 32:193–198

    PubMed  Google Scholar 

  • Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434:391–395

    PubMed  CAS  Google Scholar 

  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091

    PubMed  CAS  Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629

    PubMed  CAS  Google Scholar 

  • Randle BJ (1982) Cosegregation of monoclonal antibody reactivity and cell behaviour in the mouse preimplantation embryo. J Embryol Exp Morphol 70:261–278

    PubMed  CAS  Google Scholar 

  • Rossant J (1975a) Investigation of the determinative state of the mouse inner cell mass. II. The fate of isolated inner cell masses transferred to the oviduct. J Embryol Exp Morphol 33:991–1001

    PubMed  CAS  Google Scholar 

  • Rossant J (1975b) Investigation of the determinative state of the mouse inner cell mass. I. Aggregation of isolated inner cell masses with morulae. J Embryol Exp Morphol 33:979–990

    PubMed  CAS  Google Scholar 

  • Rossant J (1976) Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J Embryol Exp Morphol 36:283–290

    PubMed  CAS  Google Scholar 

  • Rossant J, Lis WT (1979) Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev Biol 70:255–261

    PubMed  CAS  Google Scholar 

  • Rossant J, Vijh KM (1980) Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives. Dev Biol 76:475–482

    PubMed  CAS  Google Scholar 

  • Seidel F (1952) Die entwicklugspotenzen einen isolierten blastomere des zweizellen-stadiums im saugetierei. Naturwissenschaften 39:355–356

    Google Scholar 

  • Seidel F (1960) Die entwicklungsfahigkeiten isolierter furchungszellen aus dem ei des kaninchens Oryctolagus cuniculus. Roux Arch Entw Mech 152:43–130

    Google Scholar 

  • Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci USA 72:5099–5102

    PubMed  CAS  Google Scholar 

  • Spindle AI (1978) Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos. J Exp Zool 203:483–489

    PubMed  CAS  Google Scholar 

  • Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, Devroey P, Liebaers I, Van Steirteghem A (2004) Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod 19:2849–2858

    PubMed  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102

    PubMed  CAS  Google Scholar 

  • Surani MAH, Handyside AH (1983) Reassortment of cells according to position in mouse morulae. J Exp Zool 225:505–511

    PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    PubMed  CAS  Google Scholar 

  • Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322:133–44

    PubMed  CAS  Google Scholar 

  • Szczepanska K, Stanczuk L, Maleszewski M (2011) Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 82:1–8

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1959a) Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:1286–1287

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1959b) Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol 3:191–267

    Google Scholar 

  • Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1998) Mouse chimaeras revisited: recollections and reflections. Int J Dev Biol 42:903–908

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1963) Studies on mouse chimeras developed from eggs fused in vitro. Natl Cancer Inst Monogr 11:51–71

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Witkowska A, Nowicka J (1970) Experimental partheonogenesis in the mouse. Nature 226:162–165

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Wojewodzka M (1982) A method for obtaining chimaeric mouse blastocysts with two separate inner cell masses: a preliminary report. J Embryol Exp Morphol 71:215–221

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Witkowska A, Opas J (1977) Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J Embryol Exp Morphol 41:47–64

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Ozdzenski W, CzoƂowska R (2001a) Mouse singletons and twins developed from isolated diploid blastomeres supported with tetraploid blastomeres. Int J Dev Biol 45:591–596

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Ozdzenski W, CzoƂowska R (2001b) How many blastomeres of the 4-cell embryo contribute cells to the mouse body? Int J Dev Biol 45:811–816

    PubMed  CAS  Google Scholar 

  • Tarkowski AK, Ozdzenski W, Czolowska R (2005a) Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres. Int J Dev Biol 49:825–832

    PubMed  Google Scholar 

  • Tarkowski AK, Jagiello K, Czolowska R, Ozdzenski W (2005b) Mouse chimaeras developed from electrofused blastocysts: new evidence for developmental plasticity of the inner cell mass. Int J Dev Biol 49:909–914

    PubMed  Google Scholar 

  • Tarkowski AK, Suwinska A, Czolowska R, OzdzeƄski W (2010) Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice. Dev Biol 348:190–198

    PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218

    PubMed  CAS  Google Scholar 

  • Tsunoda Y, McLaren A (1983) Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J Reprod Fertil 69:315–322

    PubMed  CAS  Google Scholar 

  • Tsunoda Y, Yasui T, Okubo Y, Nakamura K, Sugie T (1987) Development of one or two blastomeres from eight-cell mouse embryos to term in the presence of parthenogenetic eggs. Theriogenology 28:615–623

    PubMed  CAS  Google Scholar 

  • Wakayama S, Hikichi T, Suetsugu R, Sakaide Y, Bui H, Mizutani E, Wakayama T (2007) Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 25:986–993

    PubMed  CAS  Google Scholar 

  • Willadsen SM (1981) The developmental capacity of blastomeres from 4- and 8- cell sheep embryos. J Embryol Exp Morphol 65:165–172

    PubMed  CAS  Google Scholar 

  • Waksmundzka M, Wisniewska A, Maleszewski M (2006) Allocation of cells in mouse blastocyst is not determined by the order of cleavage of the first two blastomeres. Biol Reprod 75:582–587

    PubMed  CAS  Google Scholar 

  • Van de Velde H, Cauffman G, Tournaye H, Devroey P, Liebaers I (2008) The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 23:1742–1747

    PubMed  Google Scholar 

  • Ziomek CA, Johnson MH (1982) The roles of phenotype and position in guiding the fate of 16-cell mouse blastomeres. Dev Biol 91:440–447

    PubMed  CAS  Google Scholar 

  • Ziomek CA, Johnson MH, Handyside AH (1982) The developmental potential of mouse 16-cell blastomeres. J Exp Zool 221:345–355

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to dedicate this work to Professor A.K. Tarkowski, my mentor, as an expression of respect for his work and scientific achievements. I am grateful to Professor A.K. Tarkowski, Professor M. Kloc, Dr. J. Kubiak, and Professor M. Maleszewski for critical reading and valuable suggestions. During the preparation of this work Aneta Suwinska was supported by the grant in the framework of PARENT-BRIDGE Programme from the Foundation for Polish Science POMOST/2010-1/9 and a grant from Polish Ministry of Science and Higher Education N N301 311637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta SuwiƄska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

SuwiƄska, A. (2012). Preimplantation Mouse Embryo: Developmental Fate and Potency of Blastomeres. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_8

Download citation

Publish with us

Policies and ethics