Skip to main content

Maternal Control of Mouse Preimplantation Development

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Mammalian preimplantation development is a process of dedifferentiation from the terminally differentiated eggs to the totipotent blastomeres at the cleavage stage, and then to the pluripotent cells at the blastocyst stage. Maternal factors that accumulate during oogenesis dominate early preimplantation development until the embryonic factors gain control after the activation of the embryonic genome. Recently, a handful of maternal factors that are encoded by the maternal-effect genes have been characterized in genetically modified mouse models. These factors are shown to participate in many aspects of preimplantation development, such as the degradation of maternal macromolecues, epigenetic modification, protein translation, cellular signaling transduction, and cell compaction. Even so, little is known about the interactions between different maternal factors. In this chapter, we have summarized the functions of known maternal factors and hopefully this will lead to a better understanding of the regulation of preimplantation embryogenesis by the maternal regulatory network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625

    PubMed  CAS  Google Scholar 

  • Akagi T, Usuda M, Matsuda T, Ko MS, Niwa H, Asano M, Koide H, Yokota T (2005) Identification of Zfp-57 as a downstream molecule of STAT3 and Oct-3/4 in embryonic stem cells. Biochem Biophys Res Commun 331:23–30

    PubMed  CAS  Google Scholar 

  • Alizadeh Z, Kageyama S, Aoki F (2005) Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev 72:281–290

    PubMed  CAS  Google Scholar 

  • Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296–307

    PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    PubMed  CAS  Google Scholar 

  • Bachvarova R (1985) Gene expression during oogenesis and oocyte development in mammals. Dev Biol (NY 1985) 1:453–524

    CAS  Google Scholar 

  • Barton SC, Arney KL, Shi W, Niveleau A, Fundele R, Surani MA, Haaf T (2001) Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet 10:2983–2987

    PubMed  CAS  Google Scholar 

  • Becker M, Becker A, Miyara F, Han ZM, Kihara M, Brown DT, Hager GL, Latham K, Adashi EY, Misteli T (2005) Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol Biol Cell 16:3887–3895

    PubMed  CAS  Google Scholar 

  • Bellier S, Chastant S, Adenot P, Vincent M, Renard JP, Bensaude O (1997) Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J 16:6250–6262

    PubMed  CAS  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172

    PubMed  CAS  Google Scholar 

  • Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968

    PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    PubMed  CAS  Google Scholar 

  • Bleckmann SC, Blendy JA, Rudolph D, Monaghan AP, Schmid W, Schutz G (2002) Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 22:1919–1925

    PubMed  CAS  Google Scholar 

  • Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218:57–62

    PubMed  CAS  Google Scholar 

  • Brachmann SM, Yballe CM, Innocenti M, Deane JA, Fruman DA, Thomas SM, Cantley LC (2005) Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement. Mol Cell Biol 25:2593–2606

    PubMed  CAS  Google Scholar 

  • Branco MR, Oda M, Reik W (2008) Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis. Genes Dev 22:1567–1571

    PubMed  CAS  Google Scholar 

  • Briggs MR, Kadonaga JT, Bell SP, Tjian R (1986) Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science 234:47–52

    PubMed  CAS  Google Scholar 

  • Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20:1744–1754

    PubMed  CAS  Google Scholar 

  • Burglin TR, Mattaj IW, Newmeyer DD, Zeller R, Derobertis EM (1987) Cloning of nucleoplasmin from Xenopus-Laevis oocytes and analysis of its developmental expression. Genes Dev 1:97–107

    PubMed  CAS  Google Scholar 

  • Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300:633–636

    PubMed  CAS  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    PubMed  CAS  Google Scholar 

  • Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    PubMed  CAS  Google Scholar 

  • Christians E, Campion E, Thompson EM, Renard JP (1995) Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121:113–122

    PubMed  CAS  Google Scholar 

  • Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003

    PubMed  CAS  Google Scholar 

  • De La CE, Kerr B, Paredes A, Merchant-Larios H, Mendez JP, Ojeda SR (2008) Fbxw15/Fbxo12J is an F-box protein-encoding gene selectively expressed in oocytes of the mouse ovary. Biol Reprod 78:714–725

    Google Scholar 

  • de Vries WN, Evsikov AV, Haac BE, Fancher KS, Holbrook AE, Kemler R, Solter D, Knowles BB (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131:4435–4445

    PubMed  Google Scholar 

  • Ducibella T, Ukena T, Karnovsky M, Anderson E (1977) Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol 74:153–167

    PubMed  CAS  Google Scholar 

  • Edwards RG, Bavister BD, Steptoe PC (1969) Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221:632–635

    PubMed  CAS  Google Scholar 

  • Etemad-Moghadam B, Guo S, Kemphues KJ (1995) Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83:743–752

    PubMed  CAS  Google Scholar 

  • Fiorenza MT, Torcia S, Canterini S, Bevilacqua A, Narducci MG, Ragone G, Croce CM, Russo G, Mangia F (2008) TCL1 promotes blastomere proliferation through nuclear transfer, but not direct phosphorylation, of AKT/PKB in early mouse embryos. Cell Death Differ 15:420–422

    PubMed  CAS  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686

    PubMed  CAS  Google Scholar 

  • Foygel K, Choi B, Jun S, Leong DE, Lee A, Wong CC, Zuo E, Eckart M, Reijo Pera RA, Wong WH, Yao MW (2008) A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS One 3:e4109

    PubMed  Google Scholar 

  • Germain-Desprez D, Bazinet M, Bouvier M, Aubry M (2003) Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J Biol Chem 278:22367–22373

    PubMed  CAS  Google Scholar 

  • Guo S, Kemphues KJ (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    PubMed  CAS  Google Scholar 

  • Halet G, Viard P, Carroll J (2008) Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos. Development 135:425–429

    PubMed  CAS  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    PubMed  CAS  Google Scholar 

  • Helenius K, Yang Y, Tselykh TV, Pessa HK, Frilander MJ, Makela TP (2011) Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Res 39:5025–5035

    PubMed  CAS  Google Scholar 

  • Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22:1607–1616

    PubMed  CAS  Google Scholar 

  • Hovland R, Hesketh JE, Pryme IF (1996) The compartmentalization of protein synthesis: importance of cytoskeleton and role in mRNA targeting. Int J Biochem Cell Biol 28:1089–1105

    PubMed  CAS  Google Scholar 

  • Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    PubMed  CAS  Google Scholar 

  • Inoue A, Ogushi S, Saitou M, Suzuki MG, Aoki F (2011) Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization. Biol Reprod 85:70–77

    PubMed  CAS  Google Scholar 

  • Johnson MH, McConnell JM (2004) Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 15:583–597

    PubMed  CAS  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    PubMed  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    PubMed  CAS  Google Scholar 

  • Kidder GM, McLachlin JR (1985) Timing of transcription and protein synthesis underlying morphogenesis in preimplantation mouse embryos. Dev Biol 112:265–275

    PubMed  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13:2339–2352

    PubMed  CAS  Google Scholar 

  • Lai WS, Carballo E, Thorn JM, Kennington EA, Blackshear PJ (2000) Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275:17827–17837

    PubMed  CAS  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 91:8263–8267

    PubMed  CAS  Google Scholar 

  • Latham KE (1999) Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 193:71–124

    PubMed  CAS  Google Scholar 

  • Latham KE, Schultz RM (2001) Embryonic genome activation. Front Biosci 6:D748–D759

    PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    PubMed  CAS  Google Scholar 

  • Li L, Baibakov B, Dean J (2008a) A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell 15:416–425

    PubMed  CAS  Google Scholar 

  • Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137:859–870

    PubMed  CAS  Google Scholar 

  • Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008b) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557

    PubMed  CAS  Google Scholar 

  • Li X, Leder P (2007) Identifying genes preferentially expressed in undifferentiated embryonic stem cells. BMC Cell Biol 8:37

    PubMed  Google Scholar 

  • Lighten AD, Hardy K, Winston RM, Moore GE (1997) Expression of mRNA for the insulin-like growth factors and their receptors in human preimplantation embryos. Mol Reprod Dev 47:134–139

    PubMed  CAS  Google Scholar 

  • Liu H, Kim JM, Aoki F (2004) Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131:2269–2280

    PubMed  CAS  Google Scholar 

  • Liu HL, Hara KT, Aoki F (2005) Role of the first mitosis in the remodeling of the parental genomes in mouse embryos. Cell Res 15:127–132

    PubMed  CAS  Google Scholar 

  • Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, Reddy P (2006) Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol 299:1–11

    PubMed  CAS  Google Scholar 

  • Lu DP, Chandrakanthan V, Cahana A, Ishii S, O'Neill C (2004) Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. J Cell Sci 117:1567–1576

    PubMed  CAS  Google Scholar 

  • Lykke-Andersen K, Gilchrist MJ, Grabarek JB, Das P, Miska E, Zernicka-Goetz M (2008) Maternal Argonaute 2 is essential for early mouse development at the maternal-zygotic transition. Mol Biol Cell 19:4383–4392

    PubMed  CAS  Google Scholar 

  • Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270

    PubMed  CAS  Google Scholar 

  • Ma J, Zeng F, Schultz RM, Tseng H (2006) Basonuclin: a novel mammalian maternal-effect gene. Development 133:2053–2062

    PubMed  CAS  Google Scholar 

  • Maki N, Suetsugu-Maki R, Sano S, Nakamura K, Nishimura O, Tarui H, Rio-Tsonis K, Ohsumi K, Agata K, Tsonis PA (2010) Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 24:3462–3467

    PubMed  CAS  Google Scholar 

  • Marikawa Y, Alarcon VB (2012) Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In: Kubiak JZ (ed) Results Probl Cell Differ. 55., 165–184. Springer, Heidelberg

    Google Scholar 

  • Martianov I, Viville S, Davidson I (2002) RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 298:1036–1039

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Anzai M, Nakagata N, Takahashi A, Takahashi Y, Miyata K (1994) Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm. Mol Reprod Dev 39:136–140

    PubMed  CAS  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    PubMed  CAS  Google Scholar 

  • Melendez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360

    PubMed  CAS  Google Scholar 

  • Merz EA, Brinster RL, Brunner S, Chen HY (1981) Protein degradation during preimplantation development of the mouse. J Reprod Fertil 61:415–418

    PubMed  CAS  Google Scholar 

  • Mora A, Komander D, van Aalten DM, Alessi DR (2004) PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15:161–170

    PubMed  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58

    PubMed  CAS  Google Scholar 

  • Morris SA, Zernicka-Goetz M (2012) Formation of distinct cell types in the mouse blastocyst. In: Kubiak JZ (ed) Results Probl Cell Differ. 55., 203–217. Springer, Heidelberg

    Google Scholar 

  • Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21:682–693

    PubMed  CAS  Google Scholar 

  • Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, Sekimoto T, Ikawa M, Yoneda Y, Okabe M, Tanaka S, Shiota K, Nakano T (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71

    PubMed  CAS  Google Scholar 

  • Narducci MG, Fiorenza MT, Kang SM, Bevilacqua A, Di Giacomo M, Remotti D, Picchio MC, Fidanza V, Cooper MD, Croce CM, Mangia F, Russo G (2002) TCL1 participates in early embryonic development and is overexpressed in human seminomas. Proc Natl Acad Sci USA 99:11712–11717

    PubMed  CAS  Google Scholar 

  • O’Neill C (2008) The potential roles for embryotrophic ligands in preimplantation embryo development. Hum Reprod Update 14:275–288

    PubMed  Google Scholar 

  • Ohno S (2001) Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 13:641–648

    PubMed  CAS  Google Scholar 

  • Ohsugi M, Zheng P, Baibakov B, Li L, Dean J (2008) Maternally derived FILIA-MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135:259–269

    PubMed  CAS  Google Scholar 

  • Ohsumi K, Katagiri C (1991) Characterization of the ooplasmic factor inducing decondensation of and protamine removal from Toad Sperm nuclei - involvement of nucleoplasmin. Dev Biol 148:295–305

    PubMed  CAS  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    PubMed  CAS  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    PubMed  CAS  Google Scholar 

  • Pan H, Schultz RM (2011) SOX2 modulates reprogramming of gene expression in two-cell mouse embryos. Biol Reprod 85:409–416

    PubMed  CAS  Google Scholar 

  • Pauken CM, Capco DG (1999) Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol Reprod Dev 54:135–144

    PubMed  CAS  Google Scholar 

  • Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, Colledge WH, Carlton MB, Nakano T, Surani MA (2003) Stella is a maternal effect gene required for normal early development in mice. Curr Biol 13:2110–2117

    PubMed  CAS  Google Scholar 

  • Paynton BV, Rempel R, Bachvarova R (1988) Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol 129:304–314

    PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    PubMed  CAS  Google Scholar 

  • Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515

    PubMed  CAS  Google Scholar 

  • Rajkovic A, Lee JH, Yan C, Matzuk MM (2002) The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells. Mech Dev 112:173–177

    PubMed  CAS  Google Scholar 

  • Ram PT, Schultz RM (1993) Reporter gene expression in G2 of the 1-cell mouse embryo. Dev Biol 156:552–556

    PubMed  CAS  Google Scholar 

  • Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ (2004) The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131:4883–4893

    PubMed  CAS  Google Scholar 

  • Reddy P, Adhikari D, Zheng W, Liang S, Hamalainen T, Tohonen V, Ogawa W, Noda T, Volarevic S, Huhtaniemi I, Liu K (2009) PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet 18:2813–2824

    PubMed  CAS  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    PubMed  CAS  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    PubMed  CAS  Google Scholar 

  • Remboutsika E, Yamamoto K, Harbers M, Schmutz M (2002) The bromodomain mediates transcriptional intermediary factor 1alpha -nucleosome interactions. J Biol Chem 277:50318–50325

    PubMed  CAS  Google Scholar 

  • Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci USA 92:855–859

    PubMed  CAS  Google Scholar 

  • Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH (2005) The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol 284:377–386

    PubMed  CAS  Google Scholar 

  • Roest HP, Baarends WM, de Wit J, van Klaveren JW, Wassenaar E, Hoogerbrugge JW, van Cappellen WA, Hoeijmakers JH, Grootegoed JA (2004) The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol 24:5485–5495

    PubMed  CAS  Google Scholar 

  • Saeki H, Ohsumi K, Aihara H, Ito T, Hirose S, Ura K, Kaneda Y (2005) Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci USA 102:5697–5702

    PubMed  CAS  Google Scholar 

  • Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    PubMed  CAS  Google Scholar 

  • Sato M, Kimura T, Kurokawa K, Fujita Y, Abe K, Masuhara M, Yasunaga T, Ryo A, Yamamoto M, Nakano T (2002) Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev 113:91–94

    PubMed  CAS  Google Scholar 

  • Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15:531–538

    PubMed  CAS  Google Scholar 

  • Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331

    PubMed  CAS  Google Scholar 

  • Schultz RM, Worrad DM (1995) Role of chromatin structure in zygotic gene activation in the mammalian embryo. Semin Cell Biol 6:201–208

    PubMed  CAS  Google Scholar 

  • Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    PubMed  CAS  Google Scholar 

  • Suwińska A (2012) Preimplantation mouse embryo: developmental fate and potency of blastomeres. In: Kubiak JZ (ed) Results Probl Cell Differ. 55., 141–164. Springer, Heidelberg

    Google Scholar 

  • Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

    PubMed  CAS  Google Scholar 

  • Suzumori N, Burns KH, Yan W, Matzuk MM (2003) RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci USA 100:550–555

    PubMed  CAS  Google Scholar 

  • Tanaka M, Hennebold JD, Macfarlane J, Adashi EY (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128:655–664

    PubMed  CAS  Google Scholar 

  • Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648

    PubMed  CAS  Google Scholar 

  • Thompson EM, Legouy E, Renard JP (1998) Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. Dev Genet 22:31–42

    PubMed  CAS  Google Scholar 

  • Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM (2000) Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 26:267–268

    PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Zernicka-Goetz M (2006) Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J Cell Biol 174:329–338

    PubMed  CAS  Google Scholar 

  • Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    PubMed  CAS  Google Scholar 

  • Vestweber D, Gossler A, Boller K, Kemler R (1987) Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev Biol 124:451–456

    PubMed  CAS  Google Scholar 

  • Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, Lobanenkov V, Latham KE, Schultz RM, Bartolomei MS (2008) Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135:2729–2738

    PubMed  CAS  Google Scholar 

  • Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S (2010) Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA 107:17639–17644

    PubMed  CAS  Google Scholar 

  • Warner CM, Hearn TF (1977) The effect of alpha-amanitin on nucleic acid synthesis in preimplantation mouse embryos. Differentiation 7:89–97

    PubMed  CAS  Google Scholar 

  • Whitten WK, Biggers JD (1968) Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil 17:399–401

    PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    PubMed  CAS  Google Scholar 

  • Winkel GK, Ferguson JE, Takeichi M, Nuccitelli R (1990) Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev Biol 138:1–15

    PubMed  CAS  Google Scholar 

  • Worrad DM, Schultz RM (1997) Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1. Mol Reprod Dev 46:268–277

    PubMed  CAS  Google Scholar 

  • Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush LA, Shetty J, Shore AN, Reddi PP, Tung KS, Samy E, Allietta MM, Sherman NE, Herr JC, Coonrod SA (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:73–88

    PubMed  CAS  Google Scholar 

  • Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33:187–191

    PubMed  CAS  Google Scholar 

  • Xenopoulos P, Kang M, Hadjantonakis A-K (2012) Cell lineage allocation within the Inner cell mass of the mouse blastocyst. In: Kubiak JZ (ed) Results Probl Cell Differ. 55., 185–202. Springer, Heidelberg

    Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    PubMed  CAS  Google Scholar 

  • Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636

    PubMed  CAS  Google Scholar 

  • Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272:483–496

    PubMed  CAS  Google Scholar 

  • Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283:40–57

    PubMed  CAS  Google Scholar 

  • Zheng P, Dean J (2009) Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci USA 106:7473–7478

    PubMed  CAS  Google Scholar 

  • Zheng W, Gorre N, Shen Y, Noda T, Ogawa W, Lundin E, Liu K (2010) Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep 11:890–895

    PubMed  CAS  Google Scholar 

  • Zheng W, Nagaraju G, Liu Z, Liu K (2012) Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 356:24–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Zheng or Kui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zheng, W., Liu, K. (2012). Maternal Control of Mouse Preimplantation Development. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_7

Download citation

Publish with us

Policies and ethics