Skip to main content

Cyclin B in Mouse Oocytes and Embryos: Importance for Human Reproduction and Aneuploidy

  • Chapter
  • First Online:
Mouse Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 55))

Abstract

Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P, van Deursen JM (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet 36:744–749

    PubMed  CAS  Google Scholar 

  • Bergère M, Lombroso R, Gombault M, Wainer R, Selva J (2001) An idiopathic infertility with oocytes metaphase I maturation block: case report. Hum Reprod 16:2136–2138

    PubMed  Google Scholar 

  • Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J, Hunt T (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA 95:4344–4349

    PubMed  CAS  Google Scholar 

  • Brunet S, Santa MA, Guillard P, Dujardin D, Kubiak JZ, Maro B (1999) Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M-phase. J Cell Biol 146(1):1–11

    PubMed  CAS  Google Scholar 

  • Brunet S, Pahlavan G, Taylor S, Maro B (2003) Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes. Reproduction 126:443–450

    PubMed  CAS  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    PubMed  CAS  Google Scholar 

  • Chen J, Melton C, Suh N, Oh J, Horner K, Xie F, Sette C, Blelloch R, Conti M (2011) Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 25:755–766

    PubMed  CAS  Google Scholar 

  • Chesnel F, Eppig JJ (1995) Synthesis and accumulation of p34cdc2 and cyclin B in mouse oocytes during acquisition of competence to resume meiosis. Mol Reprod Dev 40:503–508

    PubMed  CAS  Google Scholar 

  • Chesnel F, Vignaux F, Richard-Parpaillon L, Huguet A, Kubiak JZ (2005a) Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev Biol 285:358–375

    PubMed  CAS  Google Scholar 

  • Chesnel F, Gautier I, Richard-Parpaillon L, Kubiak JZ (2005b) Each mitosis can be different: how the cell cycle machinery modulates early embryonic M-phases. In: Tokumoto T (ed) New impact of protein modifications in the regulation of reproductive system. Research Signpost, Kerala, India

    Google Scholar 

  • Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA (2010) Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 20:1522–1528

    PubMed  CAS  Google Scholar 

  • Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K (1991) Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 113:789–795

    PubMed  CAS  Google Scholar 

  • Ciemerych MA, Kubiak JZ (1998) Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Dev Biol 200:198–211

    PubMed  CAS  Google Scholar 

  • Ciemerych MA, Tarkowski AK, Kubiak JZ (1998) Autonomous activation of histone H1 kinase, cortical activity and microtubule organization in one- and two-cell cycle mouse embryo. Biol Cell 90:557–564

    PubMed  CAS  Google Scholar 

  • Ciemerych MA, Maro B, Kubiak JZ (1999) Control of duration of first two mitoses in a mouse embryo. Zygote 7:293–300

    PubMed  CAS  Google Scholar 

  • Clarke HJ (2012) Post-transcriptional control of gene expression during mouse oogenesis. In: Kubiak JZ (ed) Mouse development, Results Probl Cell Differ. 55., 1–21. Springer, Heidelberg

    Google Scholar 

  • Courtois A, Hiiragi T (2012) Gradual meiosis-to-mitosis transition in the early mouse embryo. In: Kubiak JZ (ed) Mouse development, Results Probl Cell Differ. 55., 107–114. Springer, Heidelberg

    Google Scholar 

  • Devault A, Fesquet D, Cavadore JC, Garrigues AM, Labbé JC, Lorca T, Picard A, Philippe M, Dorée M (1992) Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2. J Cell Biol 118:1109–1120

    PubMed  CAS  Google Scholar 

  • Dumont J, Petri S, Pellegrin F, Terret ME, Bohnsack MT, Rassinier P, Georget V, Kalab P, Gruss OJ, Verlhac MH (2007) A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176:295–305

    PubMed  CAS  Google Scholar 

  • Duncan FE, Chiang T, Schultz RM, Lampson MA (2009) Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol Reprod 81:768–776

    PubMed  CAS  Google Scholar 

  • Eppig JJ (1978) Developmental potential of LT/Sv parthenotes derived from oocytes matured in vivo and in vitro. Dev Biol 65:244–249

    PubMed  CAS  Google Scholar 

  • Fragouli E, Alfarawati S, Goodall NN, Sánchez-García JF, Colls P, Wells D (2011) The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Hum Reprod 118(3):381

    Google Scholar 

  • Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98:1247–1255

    PubMed  CAS  Google Scholar 

  • Greenwood J, Costanzo V, Robertson K, Hensey C, Gautier J (2001) Responses to DNA damage in Xenopus: cell death or cell cycle arrest. Novartis Found Symp 237:221–330; discussion 230–234

    PubMed  CAS  Google Scholar 

  • Hached K, Xie SZ, Buffin E, Cladière D, Rachez C, Sacras M, Sorger PK, Wassmann K (2011) Mps1 at kinetochores is essential for female mouse meiosis I. Development 138:2261–2271

    PubMed  CAS  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    PubMed  CAS  Google Scholar 

  • Hampl A, Eppig JJ (1995) Translational regulation of the gradual increase in histone H1 kinase activity in maturing mouse oocytes. Mol Reprod Dev 40:9–15

    PubMed  CAS  Google Scholar 

  • Han SJ, Chen R, Paronetto MP, Conti M (2005) Wee1B is an oocyte-specific kinase involved in the control of meiotic arrest in the mouse. Curr Biol 15:1670–1676

    PubMed  CAS  Google Scholar 

  • Harrison K, Sherrin D, Keeping J (2000) Repeated oocyte maturation block. J Assist Reprod Genet 17:231–233

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    PubMed  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    PubMed  CAS  Google Scholar 

  • Hauf S, Watanabe Y (2004) Kinetochore orientation in mitosis and meiosis. Cell 119:317–327

    PubMed  CAS  Google Scholar 

  • Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A (2003) Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 5:1023–1025

    PubMed  CAS  Google Scholar 

  • Hodgman R, Tay J, Mendez R, Richter JD (2001) CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 128:2815–2822

    PubMed  CAS  Google Scholar 

  • Hoffmann S, Tsurumi C, Kubiak JZ, Polanski Z (2006) Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3′UTR-dependent control of cyclin B1 synthesis. Dev Biol 292:46–54

    PubMed  CAS  Google Scholar 

  • Hoffmann S, Maro B, Kubiak JZ, Polanski Z (2011) A single bivalent efficiently inhibits cyclin B1 degradation and polar body extrusion in mouse oocytes indicating robust SAC during female meiosis I. PLoS One 6:e27143

    PubMed  CAS  Google Scholar 

  • Holt JE, Weaver J, Jones KT (2010) Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development 137:1297–1304

    PubMed  CAS  Google Scholar 

  • Homer H (2011) New insights into the genetic regulation of homologue disjunction in mammalian oocytes. Cytogenet Genome Res 133:209–222

    PubMed  CAS  Google Scholar 

  • Homer HA, McDougall A, Levasseur M, Murdoch AP, Herbert M (2005a) Mad2 is required for inhibiting securin and cyclin B degradation following spindle depolymerisation in meiosis I mouse oocytes. Reproduction 130:829–843

    PubMed  CAS  Google Scholar 

  • Homer HA, McDougall A, Levasseur M, Yallop K, Murdoch AP, Herbert M (2005b) Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes. Genes Dev 19:202–207

    PubMed  CAS  Google Scholar 

  • Homer H, Gui L, Carroll J (2009) A spindle assembly checkpoint protein functions in prophase I arrest and prometaphase progression. Science 326:991–994

    PubMed  CAS  Google Scholar 

  • Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M (2007) Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 27:1914–1924

    PubMed  CAS  Google Scholar 

  • Huo LJ, Fan HY, Zhong ZS, Chen DY, Schatten H, Sun QY (2004) Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech Dev 121:1275–1287

    PubMed  CAS  Google Scholar 

  • Huo LJ, Yu LZ, Liang CG, Fan HY, Chen DY, Sun QY (2005) Cell-cycle-dependent subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. Zygote 13:45–53

    PubMed  CAS  Google Scholar 

  • Hupalowska A, Kalaszczynska I, Hoffmann S, Tsurumi C, Kubiak JZ, Polanski Z, Ciemerych MA (2008) Metaphase I arrest in LT/Sv mouse oocytes involves the spindle assembly checkpoint. Biol Reprod 79(6):1102–1110

    PubMed  CAS  Google Scholar 

  • Iwabuchi M, Ohsumi K, Yamamoto TM, Sawada W, Kishimoto T (2000) Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J 19:4513–4523

    PubMed  CAS  Google Scholar 

  • Kalab P, Kubiak JZ, Verlhac MH, Colledge WH, Maro B (1996) Activation of p90rsk during meiotic maturation and first mitosis in mouse oocytes and eggs: MAP kinase-independent and -dependent activation. Development 122:1957–1964

    PubMed  CAS  Google Scholar 

  • Kallio M, Eriksson JE, Gorbsky GJ (2000) Differences in spindle association of the mitotic checkpoint protein Mad2 in mammalian spermatogenesis and oogenesis. Dev Biol 225:112–123

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Schultz RM, Kopf GS (2000) Acquisition of meiotic competence in mouse oocytes: absolute amounts of p34(cdc2), cyclin B1, cdc25C, and wee1 in meiotically incompetent and competent oocytes. Biol Reprod 63:1610–1616

    PubMed  CAS  Google Scholar 

  • Kitajima TS, Ohsugi M, Ellenberg J (2011) Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146:568–581

    PubMed  CAS  Google Scholar 

  • Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22:6598–6609

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Ciemerych MA (2001) Cell cycle regulation in early mouse embryos. Novartis Found Symp 237:79–89; discussion 89–99

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Weber M, Géraud G, Maro B (1992) Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes. J Cell Sci 102:457–467

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Weber M, de Pennart H, Winston NJ, Maro B (1993) The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF. EMBO J 12:3773–3778

    PubMed  CAS  Google Scholar 

  • Kubiak JZ, Ciemerych MA, Hupalowska A, Sikora-Polaczek M, Polanski Z (2008) On the transition from the meiotic to mitotic cell cycle during early mouse development. Int J Dev Biol 52:201–217

    PubMed  Google Scholar 

  • Ledan E, Polanski Z, Terret ME, Maro B (2001) Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 232:400–413

    PubMed  CAS  Google Scholar 

  • Lefebvre C, Terret ME, Djiane A, Rassinier P, Maro B, Verlhac MH (2002) Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate. J Cell Biol 157:603–613

    PubMed  CAS  Google Scholar 

  • LeMaire-Adkins R, Radke K, Hunt PA (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol 139:1611–1619

    PubMed  CAS  Google Scholar 

  • Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A, Floros V, Adelfalk C, Watanabe Y, Jessberger R, Kirkwood TB, Höög C, Herbert M (2010) Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr Biol 20:1511–1521

    PubMed  CAS  Google Scholar 

  • Liu L, Keefe DL (2008) Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 16:103–112

    PubMed  CAS  Google Scholar 

  • Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ (1998) Cyclin A1 is required for meiosis in the male mouse. Nat Genet 20:377–380

    PubMed  CAS  Google Scholar 

  • Maciejewska Z, Polanski Z, Kisiel K, Kubiak JZ, Ciemerych MA (2009) Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction 137:931–942

    PubMed  CAS  Google Scholar 

  • Madgwick S, Jones KT (2007) How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div 2:4

    PubMed  Google Scholar 

  • Madgwick S, Levasseur M, Jones KT (2005) Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. J Cell Sci 118:3849–3859

    PubMed  CAS  Google Scholar 

  • Madgwick S, Hansen DV, Levasseur M, Jackson PK, Jones KT (2006) Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis. J Cell Biol 174:791–801

    PubMed  CAS  Google Scholar 

  • Marangos P, Carroll J (2004) The dynamics of cyclin B1 distribution during meiosis I in mouse oocytes. Reproduction 128:153–62

    PubMed  CAS  Google Scholar 

  • Masui Y, Clarke HJ (1979) Oocyte maturation. Int Rev Cytol 57:185–282

    PubMed  CAS  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    PubMed  CAS  Google Scholar 

  • McGuinness BE, Anger M, Kouznetsova A, Gil-Bernabé AM, Helmhart W, Kudo NR, Wuensche A, Taylor S, Hoog C, Novak B, Nasmyth K (2009) Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr Biol 19:369–380

    PubMed  CAS  Google Scholar 

  • Mehlmann LM, Jones TL, Jaffe LA (2002) Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297:1343–1345

    PubMed  CAS  Google Scholar 

  • Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306:1947–1950

    PubMed  CAS  Google Scholar 

  • Minshull J, Sun H, Tonks NK, Murray AW (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79:475–486

    PubMed  CAS  Google Scholar 

  • Morris SA, Zernicka-Goetz M (2012) Formation of distinct cell types in the mouse blastocyst. In: Kubiak JZ (ed) Mouse development, Results Probl Cell Differ. 55., 203–217. Springer, Heidelberg

    Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234

    PubMed  CAS  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    PubMed  CAS  Google Scholar 

  • Nagaoka SI, Hodges CA, Albertini DF, Hunt PA (2011) Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr Biol 21(8):651–657

    PubMed  CAS  Google Scholar 

  • Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565

    PubMed  CAS  Google Scholar 

  • Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang XY, Refik-Rogers J, Pines J, Wolgemuth DJ, Koff A (2002) Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J Biol Chem 277:41960–41969

    PubMed  CAS  Google Scholar 

  • Niault T, Hached K, Sotillo R, Sorger PK, Maro B, Benezra R, Wassmann K (2007) Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I. PLoS One 2(11):e1165

    PubMed  Google Scholar 

  • Nixon VL, Levasseur M, McDougall A, Jones KT (2002) Ca(2+) oscillations promote APC/C-dependent cyclin B1 degradation during metaphase arrest and completion of meiosis in fertilizing mouse eggs. Curr Biol 12:746–750

    PubMed  CAS  Google Scholar 

  • Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, Wang H, Ke H, Nikolaev VO, Jaffe LA (2009) Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136:1869–1878

    PubMed  CAS  Google Scholar 

  • O’Neill GT, Kaufman MH (1987) Ovulation and fertilization of primary and secondary oocytes in LT/Sv strain mice. Gamete Res 18:27–36

    PubMed  Google Scholar 

  • Pan H, Ma P, Zhu W, Schultz RM (2008) Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol 316:397–407

    PubMed  CAS  Google Scholar 

  • Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303:682–684

    PubMed  CAS  Google Scholar 

  • Peng XR, Hsueh AJ, LaPolt PS, Bjersing L, Ny T (1991) Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129:3200–3207

    PubMed  CAS  Google Scholar 

  • Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499

    PubMed  CAS  Google Scholar 

  • Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    PubMed  CAS  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    PubMed  CAS  Google Scholar 

  • Pirino G, Wescott MP, Donovan PJ (2009) Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8:665–670

    PubMed  CAS  Google Scholar 

  • Polański Z (1986) In-vivo and in-vitro maturation rate of oocytes from two strains of mice. J Reprod Fertil 78:103–109

    PubMed  Google Scholar 

  • Polanski Z (1997) Strain difference in the timing of meiosis resumption in mouse oocytes: involvement of a cytoplasmic factor(s) acting presumably upstream of the dephosphorylation of p34cdc2 kinase. Zygote 5:105–109

    PubMed  CAS  Google Scholar 

  • Polanski Z, Ledan E, Brunet S, Louvet S, Verlhac MH, Kubiak JZ, Maro B (1998) Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes. Development 125:4989–4997

    PubMed  CAS  Google Scholar 

  • Refik-Rogers J, Manova K, Koff A (2006) Misexpression of cyclin B3 leads to aberrant spermatogenesis. Cell Cycle 5:1966–1973

    PubMed  CAS  Google Scholar 

  • Reis A, Chang HY, Levasseur M, Jones KT (2006) APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 8:539–540

    PubMed  CAS  Google Scholar 

  • Reis A, Madgwick S, Chang HY, Nabti I, Levasseur M, Jones KT (2007) Prometaphase APCcdh1 activity prevents non-disjunction in mammalian oocytes. Nat Cell Biol 9:1192–1198

    PubMed  CAS  Google Scholar 

  • Revenkova E, Herrmann K, Adelfalk C, Jessberger R (2010) Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr Biol 20:1529–1533

    PubMed  CAS  Google Scholar 

  • Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130:941–948

    PubMed  CAS  Google Scholar 

  • Schindler K, Schultz RM (2009) CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes. Biol Reprod 80:795–803

    PubMed  CAS  Google Scholar 

  • Schmiady H, Neitzel H (2002) Arrest of human oocytes during meiosis I in two sisters of consanguineous parents: first evidence for an autosomal recessive trait in human infertility: Case report. Hum Reprod 17:2556–2559

    PubMed  CAS  Google Scholar 

  • Shonn MA, McCarroll R, Murray AW (2002) Spo13 protects meiotic cohesin at centromeres in meiosis I. Genes Dev 16:1659–1671

    PubMed  CAS  Google Scholar 

  • Sikora-Polaczek M, Hupalowska A, Polanski Z, Kubiak JZ, Ciemerych MA (2006) The first mitosis of the mouse embryo is prolonged by transitional metaphase arrest. Biol Reprod 74:734–743

    PubMed  CAS  Google Scholar 

  • Solc P, Schultz RM, Motlik J (2010) Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol Hum Reprod 16:654–664

    PubMed  CAS  Google Scholar 

  • Steuerwald N, Cohen J, Herrera RJ, Sandalinas M, Brenner CA (2001) Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol Hum Reprod 7:49–55

    PubMed  CAS  Google Scholar 

  • Steuerwald NM, Bermúdez MG, Wells D, Munné S, Cohen J (2007) Maternal age-related differential global expression profiles observed in human oocytes. Reprod Biomed Online 14:700–708

    PubMed  CAS  Google Scholar 

  • Suwinska A (2012) Preimplantation mouse embryo: developmental fate and potency of blastomeres. In: Kubiak JZ (ed) Mouse development, Results Probl Cell Differ. 55., 141–164. Springer, Heidelberg

    Google Scholar 

  • Sweeney C, Murphy M, Kubelka M, Ravnik SE, Hawkins CF, Wolgemuth DJ, Carrington M (1996) A distinct cyclin A is expressed in germ cells in the mouse. Development 122:53–64

    PubMed  CAS  Google Scholar 

  • Tachibana-Konwalski K, Godwin J, van der Weyden L, Champion L, Kudo NR, Adams DJ, Nasmyth K (2010) Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 24:2505–2516

    PubMed  CAS  Google Scholar 

  • Tanaka TU (2010) Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J 29:4070–4082

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1959) Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286–1287

    PubMed  CAS  Google Scholar 

  • Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    PubMed  CAS  Google Scholar 

  • Tay J, Hodgman R, Richter JD (2000) The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev Biol 221:1–9

    PubMed  CAS  Google Scholar 

  • Terret ME, Lefebvre C, Djiane A, Rassinier P, Moreau J, Maro B, Verlhac MH (2003) DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes. Development 130:5169–5177

    PubMed  CAS  Google Scholar 

  • Tsurumi C, Hoffmann S, Graeser R, Geley S, Polanski Z (2004) The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J Cell Biol 167:1037–1050

    PubMed  CAS  Google Scholar 

  • Vaccari S, Weeks JL 2nd, Hsieh M, Menniti FS, Conti M (2009) Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol Reprod 81:595–604

    PubMed  CAS  Google Scholar 

  • Verlhac M-H, Kubiak JZ, Clarke HJ, Maro B (1994) Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120:1017–1025

    PubMed  CAS  Google Scholar 

  • Verlhac M-H, Kubiak JZ, Weber M, Géraud G, Colledge WH, Evans MJ, Maro B (1996) Mos is required for MAP kinase activation and is involved in microtubule organisation during mouse meiosis. Development 122:815–822

    PubMed  CAS  Google Scholar 

  • Wassmann K, Niault T, Maro B (2003) Metaphase I arrest upon activation of the Mad2-dependent spindle checkpoint in mouse oocytes. Curr Biol 13:1596–1608

    PubMed  CAS  Google Scholar 

  • Winston NJ (1997) Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes. Biol Cell 89:211–219

    PubMed  CAS  Google Scholar 

  • Winston N, Bourgain-Guglielmetti F, Ciemerych MA, Kubiak JZ, Senamaud-Beaufort C, Carrington M, Bréchot C, Sobczak-Thépot J (2000) Early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products. Dev Biol 223:139–153

    PubMed  CAS  Google Scholar 

  • Wolgemuth DJ (2011) Function of the A-type cyclins during gametogenesis and early embryogenesis. Results Probl Cell Differ 53:391–413

    PubMed  CAS  Google Scholar 

  • Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat Cell Biol 13:1252–1258

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Xu XY, Li XS, Yu M, Yu AM, Zong ZH, Yu BZ (2008) Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev Dyn 237:3777–3786

    PubMed  CAS  Google Scholar 

  • Zheng W, Liu K (2012) Maternal control of mouse preimplantation development. In: Kubiak JZ (ed) Mouse development, Results Probl Cell Differ. 55., 115–139. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgements

While writing this article, JZK was supported by a grant from ARC. HH is supported by a Wellcome Trust Fellowship. ZP was supported by the Polish National Science Centre (grant N° DEC-2011/B/NZ3/00190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Z. Kubiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polański, Z., Homer, H., Kubiak, J.Z. (2012). Cyclin B in Mouse Oocytes and Embryos: Importance for Human Reproduction and Aneuploidy. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_4

Download citation

Publish with us

Policies and ethics