Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs)

  • Ken-ichi Isobe
  • Zhao Cheng
  • Sachiko Ito
  • Naomi Nishio
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 55)


The mouse is a perfect model to study aging in mammals. It has a relatively short life span and genetic manipulations in this species are well established. Most interestingly, the mouse is a fantastic tool to produce stem cells. Forced expression of only four transcription factors (Oct3/4, Sox2, Klf4, and c-Myc) in murine and human somatic cells resets the expression of genes that are characteristic of differentiated cells and consequently induces the formation of pluripotent stem cells (iPSCs). This technology opens new and exciting possibilities in medical research, especially personalized cell therapies for treating human disease. To treat damaged tissues or repair organs in elderly patients, it will be necessary to establish iPSCs from their tissues. To determine the feasibility of using this technology with elderly patients, we asked whether it was indeed possible to establish iPSCs from the tissues of aged mice and to differentiate them to tissue cells. We succeeded in establishing iPSC clones using bone marrow (BM) from 21-month-old EGFP-C57BL/6 mice, which had been cultured for 4 days in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF). Our iPSCs from aged mice (aged iPSCs) and those from mouse embryonic fibroblasts (MEFs) strongly expressed SSEA-1 and Pou5f1, and showed strong alkaline phosphatase (AP) activity. Our aged iPSCs made teratomas when injected into the back skin of syngeneic mice, and differentiated to tissue cells of three germ lines in vitro. Further experiments to make chimeric mice and germ line cells will determine whether the aged iPSCs possess the properties of much younger cells and are capable of regenerating aged mice.


Pluripotent Stem Cell Leukemia Inhibitory Factor Aged Mouse Somatic Cell Nuclear Transfer Inner Cell Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23(18):2134–2139PubMedCrossRefGoogle Scholar
  2. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8(4):299–309PubMedCrossRefGoogle Scholar
  3. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG et al (1985) Plasticity of the differentiated state. Science 230(4727):758–766PubMedCrossRefGoogle Scholar
  4. Boguski MS (2002) Comparative genomics: the mouse that roared. Nature 420(6915):515–516PubMedCrossRefGoogle Scholar
  5. Cheng Z, Ito S, Nishio N, Xiao H, Zhang R, Suzuki H et al (2011) Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells. J Mol Cell Biol 3(2):91–98PubMedCrossRefGoogle Scholar
  6. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5(8):e1000602PubMedCrossRefGoogle Scholar
  7. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221PubMedCrossRefGoogle Scholar
  8. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  9. Flores I, Benetti R, Blasco MA (2006) Telomerase regulation and stem cell behaviour. Curr Opin Cell Biol 18(3):254–260PubMedCrossRefGoogle Scholar
  10. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12(1):36–47PubMedCrossRefGoogle Scholar
  11. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67PubMedCrossRefGoogle Scholar
  12. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS et al (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466(7304):383–387PubMedCrossRefGoogle Scholar
  13. Gurdon JB (1962) The transplantation of nuclei between two species of Xenopus. Dev Biol 5:68–83PubMedCrossRefGoogle Scholar
  14. Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322(5909):1811–1815PubMedCrossRefGoogle Scholar
  15. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460PubMedCrossRefGoogle Scholar
  16. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6(5):479–491PubMedCrossRefGoogle Scholar
  17. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  18. Herskind AM, McGue M, Holm NV, Sørensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323PubMedCrossRefGoogle Scholar
  19. Hogan BL (1976) Changes in the behaviour of teratocarcinoma cells cultivated in vitro. Nature 263(5573):136–137PubMedCrossRefGoogle Scholar
  20. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259):1132–1135PubMedCrossRefGoogle Scholar
  21. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62PubMedCrossRefGoogle Scholar
  22. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582PubMedCrossRefGoogle Scholar
  23. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119(7):1001–1012PubMedCrossRefGoogle Scholar
  24. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144PubMedCrossRefGoogle Scholar
  25. Kishigami S, Wakayama S, Hosoi Y, Iritani A, Wakayama T (2008) Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome. Exp Cell Res 314(9):1945–1950PubMedCrossRefGoogle Scholar
  26. Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213PubMedCrossRefGoogle Scholar
  27. Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM et al (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288(5466):665–669PubMedCrossRefGoogle Scholar
  28. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118PubMedCrossRefGoogle Scholar
  29. Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259):1136–1139PubMedCrossRefGoogle Scholar
  30. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73PubMedCrossRefGoogle Scholar
  31. Loh YH, Zhang W, Chen X, George J, Ng HH (2007) Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 21(20):2545–2557PubMedCrossRefGoogle Scholar
  32. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R et al (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105(8):2883–2888PubMedCrossRefGoogle Scholar
  33. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340PubMedCrossRefGoogle Scholar
  34. Manosalva I, González A (2010) Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 74(9):1539–1547PubMedCrossRefGoogle Scholar
  35. Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153PubMedCrossRefGoogle Scholar
  36. Martin GM, Sprague CA, Epstein CJ (1970) Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest 23(1):86–92PubMedGoogle Scholar
  37. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4):521–531PubMedCrossRefGoogle Scholar
  38. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55PubMedCrossRefGoogle Scholar
  39. Mitchell BD, Hsueh WC, King TM, Pollin TI, Sorkin J, Agarwala R et al (2001) Heritability of life span in the Old Order Amish. Am J Med Genet 102(4):346–352PubMedCrossRefGoogle Scholar
  40. Mizutani E, Ono T, Li C, Maki-Suetsugu R, Wakayama T (2008) Propagation of senescent mice using nuclear transfer embryonic stem cell lines. Genesis 46(9):478–483PubMedCrossRefGoogle Scholar
  41. Nishio N, Okawa Y, Sakurai H, Isobe K (2008) Neutrophil depletion delays wound repair in aged mice. Age (Dordr) 30(1):11–19CrossRefGoogle Scholar
  42. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031PubMedCrossRefGoogle Scholar
  43. Ogonuki N, Inoue K, Yamamoto Y, Noguchi Y, Tanemura K, Suzuki O et al (2002) Early death of mice cloned from somatic cells. Nat Genet 30(3):253–254PubMedCrossRefGoogle Scholar
  44. Paigen K. (1995) A miracle enough the power of mice. Nat Med 1:215–220PubMedCrossRefGoogle Scholar
  45. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146PubMedCrossRefGoogle Scholar
  46. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8(1):58–69PubMedCrossRefGoogle Scholar
  47. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086PubMedCrossRefGoogle Scholar
  48. Röhme D (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78(8):5009–5013PubMedCrossRefGoogle Scholar
  49. Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A et al (1999) Analysis of telomere lengths in cloned sheep. Nature 399(6734):316–317PubMedCrossRefGoogle Scholar
  50. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2(3):230–240PubMedCrossRefGoogle Scholar
  51. Surani MA (1999) Reprogramming a somatic nucleus by trans-modification activity in germ cells. Semin Cell Dev Biol 10(3):273–277PubMedCrossRefGoogle Scholar
  52. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  53. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  54. Tamashiro KL, Wakayama T, Yamazaki Y, Akutsu H, Woods SC, Kondo S et al (2003) Phenotype of cloned mice: development, behavior, and physiology. Exp Biol Med (Maywood) 228(10):1193–1200Google Scholar
  55. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148PubMedCrossRefGoogle Scholar
  56. vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M et al (2006) Genetic influence on human lifespan and longevity. Hum Genet 119(3):312–321PubMedCrossRefGoogle Scholar
  57. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394(6691):369–374PubMedCrossRefGoogle Scholar
  58. Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ et al (2000) Cloning of mice to six generations. Nature 407(6802):318–319PubMedCrossRefGoogle Scholar
  59. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3):311–323PubMedCrossRefGoogle Scholar
  60. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324PubMedCrossRefGoogle Scholar
  61. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473(7347):343–348PubMedCrossRefGoogle Scholar
  62. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813PubMedCrossRefGoogle Scholar
  63. Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25(7):679–684PubMedCrossRefGoogle Scholar
  64. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523PubMedCrossRefGoogle Scholar
  65. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar
  66. Yuan R, Peters LL, Paigen B (2011) Mice as a mammalian model for research on the genetics of aging. ILAR J 52(1):4–15PubMedGoogle Scholar
  67. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ken-ichi Isobe
    • 1
  • Zhao Cheng
    • 1
  • Sachiko Ito
    • 1
  • Naomi Nishio
    • 1
  1. 1.Department of ImmunologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations