Mouse-Induced Pluripotent Stem Cells

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 55)

Abstract

Pluripotent stem cells belong to a unique population of cells, which can self-renew indefinitely and have the potential to give rise to all cell types in an organism. Generally, pluripotent stem cells include embryonic stem cells (ESCs), embryonic germ cells (EGCs), and embryonal carcinoma cells (ECCs) (Boiani and Scholer 2005). In 2006, a new type of pluripotent stem cells, induced pluripotent stem cells (iPSCs), was established by direct reprogramming of differentiated somatic cells (Takahashi and Yamanaka 2006). The unique properties of iPSCs make them extremely attractive in regenerative medicine, drug screening, disease modeling, as well as study of developmental biology (Cyranoski 2008; Maherali and Hochedlinger 2008; Nishikawa et al. 2008).

Keywords

Pluripotent Stem Cell Human ESCs iPSC Line Human iPSCs Starting Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388PubMedCrossRefGoogle Scholar
  2. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF, Amoroso MW, Oakley DH et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452PubMedCrossRefGoogle Scholar
  3. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872–884PubMedCrossRefGoogle Scholar
  4. Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, Kupriyanov S, Baldwin KK (2009) Adult mice generated from induced pluripotent stem cells. Nature 461:91–94PubMedCrossRefGoogle Scholar
  5. Carey BW, Markoulaki S, Hanna JH, Faddah DA, Buganim Y, Kim J, Ganz K, Steine EJ, Cassady JP, Creyghton MP et al (2011) Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9:588–598PubMedCrossRefGoogle Scholar
  6. Cyranoski D (2008) Stem cells: 5 things to know before jumping on the iPS bandwagon. Nature 452:406–408PubMedCrossRefGoogle Scholar
  7. De Carvalho DD, You JS, Jones PA (2010) DNA methylation and cellular reprogramming. Trends Cell Biol 20:609–617PubMedCrossRefGoogle Scholar
  8. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K (2008) Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26:2467–2474PubMedCrossRefGoogle Scholar
  9. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S et al (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79PubMedCrossRefGoogle Scholar
  10. Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J et al (2009a) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol 11:197–203PubMedCrossRefGoogle Scholar
  11. Feng B, Ng JH, Heng JC, Ng HH (2009b) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312PubMedCrossRefGoogle Scholar
  12. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67PubMedCrossRefGoogle Scholar
  13. Guenther MG, Frampton GM, Soldner F, Hockemeyer D, Mitalipova M, Jaenisch R, Young RA (2010) Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7:249–257PubMedCrossRefGoogle Scholar
  14. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923PubMedCrossRefGoogle Scholar
  15. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601PubMedCrossRefGoogle Scholar
  16. Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174PubMedCrossRefGoogle Scholar
  17. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R (2008) A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3:346–353PubMedCrossRefGoogle Scholar
  18. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135PubMedCrossRefGoogle Scholar
  19. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008a) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797PubMedCrossRefGoogle Scholar
  20. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008b) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275PubMedCrossRefGoogle Scholar
  21. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S, Sourour M, Hamalainen R, Olsson C et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62PubMedCrossRefGoogle Scholar
  22. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199PubMedCrossRefGoogle Scholar
  23. Kang L, Wang J, Zhang Y, Kou Z, Gao S (2009) iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5:135–138PubMedCrossRefGoogle Scholar
  24. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R et al (2009a) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedCrossRefGoogle Scholar
  25. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009b) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–653PubMedCrossRefGoogle Scholar
  26. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D et al (2009c) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419PubMedCrossRefGoogle Scholar
  27. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481PubMedCrossRefGoogle Scholar
  28. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118PubMedCrossRefGoogle Scholar
  29. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1:403–415PubMedCrossRefGoogle Scholar
  30. Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N et al (2008) Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res 18:600–603PubMedCrossRefGoogle Scholar
  31. Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3:595–605PubMedCrossRefGoogle Scholar
  32. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153PubMedCrossRefGoogle Scholar
  33. Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ, Dausman JA, Fu D, Gao Q, Wu S et al (2009) Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27:169–171PubMedCrossRefGoogle Scholar
  34. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181PubMedCrossRefGoogle Scholar
  35. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560PubMedCrossRefGoogle Scholar
  36. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedCrossRefGoogle Scholar
  37. Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9:725–729PubMedCrossRefGoogle Scholar
  38. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  39. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953PubMedCrossRefGoogle Scholar
  40. Pasi CE, Dereli-Oz A, Negrini S, Friedli M, Fragola G, Lombardo A, Van Houwe G, Naldini L, Casola S, Testa G et al (2011) Genomic instability in induced stem cells. Cell Death Differ 18:745–753PubMedCrossRefGoogle Scholar
  41. Ramalho-Santos M (2009) iPS cells: insights into basic biology. Cell 138:616–618PubMedCrossRefGoogle Scholar
  42. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59PubMedCrossRefGoogle Scholar
  43. Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D (2011) E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 12:720–726PubMedCrossRefGoogle Scholar
  44. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295–305PubMedCrossRefGoogle Scholar
  45. Schwarze SR, Dowdy SF (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21:45–48PubMedCrossRefGoogle Scholar
  46. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008a) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574PubMedCrossRefGoogle Scholar
  47. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008b) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528PubMedCrossRefGoogle Scholar
  48. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253PubMedCrossRefGoogle Scholar
  49. Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B et al (2010) Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell 141:943–955PubMedCrossRefGoogle Scholar
  50. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263PubMedCrossRefGoogle Scholar
  51. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008a) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240PubMedCrossRefGoogle Scholar
  52. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008b) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedCrossRefGoogle Scholar
  53. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181PubMedCrossRefGoogle Scholar
  54. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  55. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  56. Tong M, Lv Z, Liu L, Zhu H, Zheng QY, Zhao XY, Li W, Wu YB, Zhang HJ, Wu HJ et al (2011) Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Res 21:1634–1637PubMedCrossRefGoogle Scholar
  57. Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G et al (2011a) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9:575–587PubMedCrossRefGoogle Scholar
  58. Wang Y, Chen J, Hu JL, Wei XX, Qin D, Gao J, Zhang L, Jiang J, Li JS, Liu J et al (2011b) Reprogramming of mouse and human somatic cells by high-performance engineered factors. EMBO Rep 12:373–378PubMedCrossRefGoogle Scholar
  59. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630PubMedCrossRefGoogle Scholar
  60. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedCrossRefGoogle Scholar
  61. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861PubMedCrossRefGoogle Scholar
  62. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedCrossRefGoogle Scholar
  63. Wu G, Liu N, Rittelmeyer I, Sharma AD, Sgodda M, Zaehres H, Bleidissel M, Greber B, Gentile L, Han DW et al (2011) Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol 9:e1001099PubMedCrossRefGoogle Scholar
  64. Yamanaka S (2009a) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52PubMedCrossRefGoogle Scholar
  65. Yamanaka S (2009b) A fresh look at iPS cells. Cell 137:13–17PubMedCrossRefGoogle Scholar
  66. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241PubMedCrossRefGoogle Scholar
  67. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  68. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801PubMedCrossRefGoogle Scholar
  69. Zarzeczny A, Scott C, Hyun I, Bennett J, Chandler J, Charge S, Heine H, Isasi R, Kato K, Lovell-Badge R et al (2009) iPS cells: mapping the policy issues. Cell 139:1032–1037PubMedCrossRefGoogle Scholar
  70. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma QW, Wang L et al (2009) iPS cells produce viable mice through tetraploid complementation. Nature 461:86–90PubMedCrossRefGoogle Scholar
  71. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215PubMedCrossRefGoogle Scholar
  72. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Stem Cell Biology, Institute of Health SciencesShanghai Jiao Tong University School of Medicine/Shanghai Institutes of Biological Sciences, CASShanghaiChina

Personalised recommendations