Cell Movements in the Egg Cylinder Stage Mouse Embryo

  • Bradley Joyce
  • Shankar Srinivas
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 55)


Embryonic development does not simply consist of the growth of a preformed miniature foetus or “homunculus”. It is a tremendously dynamic process, characterised by a great deal of cell movement and tissue rearrangement. For example, during embryogenesis the forming heart starts “ahead” of the forming brain and only comes to lie in its more familiar position with respect to the brain following extensive tissue movements. This chapter looks at the movement of the anterior visceral endoderm, a signalling centre in the early embryo that is responsible for the correct orientation of the anterior–posterior axis.


Inner Cell Mass Primitive Streak Visceral Endoderm Primitive Endoderm Asymmetric Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10(2):91–103PubMedCrossRefGoogle Scholar
  2. Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N (1998) Differential recruitment of dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12(16):2610–2622PubMedCrossRefGoogle Scholar
  3. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3(7):683–686PubMedCrossRefGoogle Scholar
  4. Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26(4):265–270PubMedCrossRefGoogle Scholar
  5. Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68(1–2):45–57PubMedCrossRefGoogle Scholar
  6. Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429(6992):667–671PubMedCrossRefGoogle Scholar
  7. Blankenship JT, Backovic ST, Sanny JS, Weitz O, Zallen JA (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11(4):459–470PubMedCrossRefGoogle Scholar
  8. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411(6840):965–969PubMedCrossRefGoogle Scholar
  9. Caneparo L, Huang YL, Staudt N, Tada M, Ahrendt R, Kazanskaya O, Niehrs C, Houart C (2007) Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev 21(4):465–480PubMedCrossRefGoogle Scholar
  10. Conti MA, Even-Ram S, Liu C, Yamada KM, Adelstein RS (2004) Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem 279(40):41263–41266PubMedCrossRefGoogle Scholar
  11. Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395(6703):702–707PubMedCrossRefGoogle Scholar
  12. Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442(7106):1038–1041PubMedCrossRefGoogle Scholar
  13. Kimura-Yoshida C, Nakano H, Okamura D, Nakao K, Yonemura S, Belo JA, Aizawa S, Matsui Y, Matsuo I (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9(5):639–650PubMedCrossRefGoogle Scholar
  14. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94(3):287–297PubMedCrossRefGoogle Scholar
  15. Mesnard D, Guzman-Ayala M, Constam DB (2006) Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133(13):2497–2505PubMedGoogle Scholar
  16. Migeotte I, Omelchenko T, Hall A, Anderson KV (2010) Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse. PLoS Biol 8(8):e1000442PubMedCrossRefGoogle Scholar
  17. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Izpisua Belmonte JC, Westphal H (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3):423–434PubMedCrossRefGoogle Scholar
  18. Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129(14):3455–3468PubMedGoogle Scholar
  19. Perea-Gomez A, Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45(1 Spec No):311–320PubMedGoogle Scholar
  20. Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3(5):745–756PubMedCrossRefGoogle Scholar
  21. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397(6721):707–710PubMedCrossRefGoogle Scholar
  22. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135(18):3081–3091PubMedCrossRefGoogle Scholar
  23. Rakeman AS, Anderson KV (2006) Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development 133(16):3075–3083PubMedCrossRefGoogle Scholar
  24. Rodriguez TA, Casey ES, Harland RM, Smith JC, Beddington RS (2001) Distinct enhancer elements control Hex expression during gastrulation and early organogenesis. Dev Biol 234(2):304–316PubMedCrossRefGoogle Scholar
  25. Rodriguez TA, Srinivas S, Clements MP, Smith JC, Beddington RS (2005) Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132(11):2513–2520PubMedCrossRefGoogle Scholar
  26. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136(5):701–713PubMedCrossRefGoogle Scholar
  27. Sakuma R, Ohnishi Yi Y, Meno C, Fujii H, Juan H, Takeuchi J, Ogura T, Li E, Miyazono K, Hamada H (2002) Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7(4):401–412PubMedCrossRefGoogle Scholar
  28. Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23(3):265–277PubMedCrossRefGoogle Scholar
  29. Simpson EH, Johnson DK, Hunsicker P, Suffolk R, Jordan SA, Jackson IJ (1999) The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev Biol 213(1):202–206PubMedCrossRefGoogle Scholar
  30. Srinivas S (2006) The anterior visceral endoderm-turning heads. Genesis 44(11):565–572PubMedCrossRefGoogle Scholar
  31. Srinivas S, Rodriguez T, Clements M, Smith JC, Beddington RS (2004) Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 131(5):1157–1164PubMedCrossRefGoogle Scholar
  32. Stanley EG, Biben C, Allison J, Hartley L, Wicks IP, Campbell IK, McKinley M, Barnett L, Koentgen F, Robb L, Harvey RP (2000) Targeted insertion of a lacZ reporter gene into the mouse Cer1 locus reveals complex and dynamic expression during embryogenesis. Genesis 26(4):259–264PubMedCrossRefGoogle Scholar
  33. Stuckey DW, Clements M, Di-Gregorio A, Senner CE, Le Tissier P, Srinivas S, Rodriguez TA (2011) Coordination of cell proliferation and anterior–posterior axis establishment in the mouse embryo. Development 138(8):1521–1530PubMedCrossRefGoogle Scholar
  34. Takaoka K, Yamamoto M, Hamada H (2011) Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 13(7):743–752PubMedCrossRefGoogle Scholar
  35. Takaoka K, Yamamoto M, Shiratori H, Meno C, Rossant J, Saijoh Y, Hamada H (2006) The mouse embryo autonomously acquires anterior–posterior polarity at implantation. Dev Cell 10(4):451–459PubMedCrossRefGoogle Scholar
  36. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6(11):1487–1496PubMedCrossRefGoogle Scholar
  37. Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125(1):85–94PubMedGoogle Scholar
  38. Trichas G, Joyce B, Crompton LA, Wilkins V, Clements M, Tada M, Rodriguez TA, Srinivas S (2011) Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm. PLoS Biol 9(2):e1001019PubMedCrossRefGoogle Scholar
  39. Trichas G, Smith A, White N, Wilkins V, Watanabe T, Moore A, Joyce B, Sugnaseelan J, Rodriguez TA, Kay D, Baker RE, Maini PK, Srinivas S (2012) Multi-cellular rosettes in the mouse visceral endoderm facilitate the ordered migration of AVE cells. PLoS Biol 10(2):e1001256PubMedCrossRefGoogle Scholar
  40. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214PubMedCrossRefGoogle Scholar
  41. Yamamoto M, Saijoh Y, Perea-Gomez A, Shawlot W, Behringer RR, Ang SL, Hamada H, Meno C (2004) Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428(6981):387–392PubMedCrossRefGoogle Scholar
  42. Zallen JA, Zallen R (2004) Cell-pattern disordering during convergent extension in Drosophila. J Phys Condens Matter 16(44):S5073CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations