Antczak M, Van Blerkom J (1997) Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod 3:1067–1086
PubMed
CrossRef
CAS
Google Scholar
Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 95:5082–5087
PubMed
CrossRef
CAS
Google Scholar
Bischoff M, Parfitt DE, Zernicka-Goetz M (2008) Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135:953–962
PubMed
CrossRef
CAS
Google Scholar
Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624
PubMed
CrossRef
CAS
Google Scholar
Chisholm JC, Houliston E (1987) Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101:565–582
PubMed
CAS
Google Scholar
Dalcq AM (1957) Terminology of induction. Acta Anat (Basel) 30:242–253
CrossRef
CAS
Google Scholar
Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–4231
PubMed
CrossRef
CAS
Google Scholar
Dziadek M (1979) Cell differentiation in isolated inner cell masses of mouse blastocysts in vitro: onset of specific gene expression. J Embryol Exp Morphol 53:367–379
PubMed
CAS
Google Scholar
Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249
PubMed
CrossRef
CAS
Google Scholar
Fleming TP, Sheth B, Fesenko I (2001) Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front Biosci 6:D1000–1007
PubMed
CrossRef
CAS
Google Scholar
Fujikura J, Yamato E, Yonemura S, Hosoda K, Masui S, Nakao K, Miyazaki Ji J, Niwa H (2002) Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16:784–789
PubMed
CrossRef
CAS
Google Scholar
Gardner RL (1982) Investigation of cell lineage and differentiation in the extraembryonic endoderm of the mouse embryo. J Embryol Exp Morphol 68:175–198
PubMed
CAS
Google Scholar
Gardner RL (2002) Experimental analysis of second cleavage in the mouse. Hum Reprod 17:3178–3189
PubMed
CrossRef
CAS
Google Scholar
Graham CF, Deussen ZA (1978) Features of cell lineage in preimplantation mouse development. J Embryol Exp Morphol 48:53–72
PubMed
CAS
Google Scholar
Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010). Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–85
PubMed
CrossRef
CAS
Google Scholar
Gulyas BJ (1975) A reexamination of cleavage patterns in eutherian mammalian eggs: rotation of blastomere pairs during second cleavage in the rabbit. J Exp Zool 193:235–248
PubMed
CrossRef
CAS
Google Scholar
Handyside AH (1978) Time of commitment of inside cells isolated from preimplantation mouse embryos. J Embryol Exp Morphol 45:37–53
PubMed
CAS
Google Scholar
Handyside AH (1980) Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol 60:99–116
PubMed
CAS
Google Scholar
Handyside AH, Lesko JG, Tarin JJ, Winston RM, Hughes MR (1992) Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med 327:905–909
PubMed
CrossRef
CAS
Google Scholar
Hillman N, Sherman MI, Graham C (1972) The effect of spatial arrangement on cell determination during mouse development. J Embryol Exp Morphol 28:263–278
PubMed
CAS
Google Scholar
Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706
PubMed
CrossRef
CAS
Google Scholar
Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80
PubMed
CrossRef
CAS
Google Scholar
Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PP et al (2002) Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379
PubMed
CAS
Google Scholar
Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126:723–732
CAS
Google Scholar
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:e42
PubMed
CrossRef
Google Scholar
Lehtonen E (1980) Changes in cell dimensions and intercellular contacts during cleavage-stage cell cycles in mouse embryonic cells. J Embryol Exp Morphol 58:231–249
PubMed
CAS
Google Scholar
Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 72:1441–1445
PubMed
CrossRef
CAS
Google Scholar
Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107:6364–6369
PubMed
CrossRef
CAS
Google Scholar
Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590
PubMed
CrossRef
CAS
Google Scholar
Murray P, Edgar D (2001) The regulation of embryonic stem cell differentiation by leukaemia inhibitory factor (LIF). Differentiation 68:227–234
PubMed
CrossRef
CAS
Google Scholar
Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, Yamaki M, Dimos JT, Chen AE, Melton DA et al (2010) Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 24:312–326
PubMed
CrossRef
CAS
Google Scholar
Nichols J, Silva J, Roode M, Smith A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–3222
PubMed
CrossRef
CAS
Google Scholar
Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410
PubMed
CrossRef
CAS
Google Scholar
Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283
PubMed
CrossRef
CAS
Google Scholar
Ota M, Sasaki H (2008) Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135:4059–4069
PubMed
CrossRef
CAS
Google Scholar
Pan D (2007) Hippo signaling in organ size control. Genes Dev 21:886–897
PubMed
CrossRef
CAS
Google Scholar
Parfitt DE, Zernicka-Goetz M (2010) Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell 21:2649–2660
PubMed
CrossRef
CAS
Google Scholar
Perea-Gomez A, Meilhac SM, Piotrowska-Nitsche K, Gray D, Collignon J, Zernicka-Goetz M (2007) Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev Biol 7:96
PubMed
CrossRef
Google Scholar
Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development 132:479–490
PubMed
CrossRef
CAS
Google Scholar
Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515
PubMed
CrossRef
CAS
Google Scholar
Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091
PubMed
CrossRef
CAS
Google Scholar
Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629
PubMed
CrossRef
CAS
Google Scholar
Reeve WJ, Ziomek CA (1981) Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J Embryol Exp Morphol 62:339–350
PubMed
CAS
Google Scholar
Rossant J (1975) Investigation of the determinative state of the mouse inner cell mass. II. The fate of isolated inner cell masses transferred to the oviduct. J Embryol Exp Morphol 33:991–1001
PubMed
CAS
Google Scholar
Rossant J, Chazaud C, Yamanaka Y (2003) Lineage allocation and asymmetries in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 358:1341–1348, discussion 1349
PubMed
CrossRef
CAS
Google Scholar
Rossant J, Lis WT (1979) Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev Biol 70:255–261
PubMed
CrossRef
CAS
Google Scholar
Rossant J, Vijh KM (1980) Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives. Dev Biol 76:475–482
PubMed
CrossRef
CAS
Google Scholar
Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H (2008) Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 28:3177–3189
PubMed
CrossRef
CAS
Google Scholar
Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331
PubMed
CrossRef
CAS
Google Scholar
Shimosato D, Shiki M, Niwa H (2007) Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev Biol 7:80
PubMed
CrossRef
Google Scholar
Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci USA 72:5099–5102
PubMed
CrossRef
CAS
Google Scholar
Spindle AI (1978) Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos. J Exp Zool 203:483–489
PubMed
CrossRef
CAS
Google Scholar
Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102
PubMed
CrossRef
CAS
Google Scholar
Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322:133–144
PubMed
CrossRef
CAS
Google Scholar
Tarkowski AK (1959) Experiments on the development of isolated blastomers of mouse eggs. Nature 184:1286–1287
PubMed
CrossRef
CAS
Google Scholar
Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180
PubMed
CAS
Google Scholar
Thomas FC, Sheth B, Eckert JJ, Bazzoni G, Dejana E, Fleming TP (2004) Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. J Cell Sci 117:5599–5608
PubMed
CrossRef
CAS
Google Scholar
Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218
PubMed
CrossRef
CAS
Google Scholar
Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallee S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–319
PubMed
CrossRef
CAS
Google Scholar
Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6:133–144
PubMed
CrossRef
CAS
Google Scholar
Watson AJ (1992) The cell biology of blastocyst development. Mol Reprod Dev 33:492–504
PubMed
CrossRef
CAS
Google Scholar
Weber RJ, Pedersen RA, Wianny F, Evans MJ, Zernicka-Goetz M (1999) Polarity of the mouse embryo is anticipated before implantation. Development 126:5591–5598
PubMed
CAS
Google Scholar
Wiley LM, Obasaju MF (1988) Induction of cytoplasmic polarity in heterokaryons of mouse 4-cell-stage blastomeres fused with 8-cell- and 16-cell-stage blastomeres. Dev Biol 130:276–284
PubMed
CrossRef
CAS
Google Scholar
Wilson IB, Bolton E, Cuttler RH (1972) Preimplantation differentiation in the mouse egg as revealed by microinjection of vital markers. J Embryol Exp Morphol 27:467–469
PubMed
CAS
Google Scholar
Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836
PubMed
CrossRef
CAS
Google Scholar
Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724
PubMed
CrossRef
CAS
Google Scholar
Ziomek CA, Johnson MH (1980) Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935–942
PubMed
CrossRef
CAS
Google Scholar