Skip to main content

Cell Lineage Allocation Within the Inner Cell Mass of the Mouse Blastocyst

Part of the Results and Problems in Cell Differentiation book series (RESULTS,volume 55)

Abstract

At the time of implantation, the early mouse embryo consists of three distinct cell lineages: the epiblast (EPI), primitive endoderm (PrE), and trophectoderm (TE). Here we will focus on the EPI and PrE cell lineages, which arise within the inner cell mass (ICM) of the blastocyst. Though still poorly understood, our current understanding of the mechanisms underlying this lineage allocation will be discussed. It was originally thought that lineage choice was strictly controlled by the position of a cell within the ICM. However, it is now believed that the EPI and PrE lineages are defined both by their position and by the expression of lineage-specific transcription factors. Interestingly, these lineage-specific transcription factors are initially co-expressed in early ICM cells, suggesting an initial multi-lineage priming state. Thereafter, lineage-specific transcription factors display a mutually exclusive salt-and-pepper distribution that reflects cell specification of the EPI or PrE fates. Later on, lineage segregation and likely commitment are completed with the sequestration of PrE cells to the surface of the ICM, which lies at the blastocyst cavity roof. We discuss recent advances that have focused on elucidating how the salt-and-pepper pattern is established and then resolved within the ICM, leading to the correct apposition of cell lineages in preparation for implantation.

Keywords

  • Inner Cell Mass
  • Asymmetric Division
  • Cell Fate Decision
  • Lineage Bias
  • Inner Cell Mass Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-30406-4_10
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-30406-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5

References

  • Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P (1998) Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA 95:5082–5087

    PubMed  CrossRef  CAS  Google Scholar 

  • Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103

    PubMed  CrossRef  CAS  Google Scholar 

  • Artus J, Panthier JJ, Hadjantonakis AK (2010) A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development 137:3361–3372

    PubMed  CrossRef  CAS  Google Scholar 

  • Artus J, Piliszek A, Hadjantonakis AK (2011) The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 350:393–404

    PubMed  CrossRef  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    PubMed  CrossRef  CAS  Google Scholar 

  • Becker S, Casanova J, Grabel L (1992) Localization of endoderm-specific mRNAs in differentiating F9 embryoid bodies. Mech Dev 37:3–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Bruce AW, Zernicka-Goetz M (2010) Developmental control of the early mammalian embryo: competition among heterogeneous cells that biases cell fate. Curr Opin Genet Dev 20:485–491

    PubMed  CrossRef  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    PubMed  CrossRef  CAS  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234

    PubMed  CrossRef  CAS  Google Scholar 

  • Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160

    PubMed  CrossRef  CAS  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    PubMed  CrossRef  CAS  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    PubMed  CrossRef  CAS  Google Scholar 

  • Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T (1998) Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95:793–803

    PubMed  CrossRef  CAS  Google Scholar 

  • Chisholm JC, Houliston E (1987) Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101:565–582

    PubMed  CAS  Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–4231

    PubMed  CrossRef  CAS  Google Scholar 

  • Enders AC, Given RL, Schlafke S (1978) Differentiation and migration of endoderm in the rat and mouse at implantation. Anat Rec 190:65–77

    PubMed  CrossRef  CAS  Google Scholar 

  • Fassler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9:1896–1908

    PubMed  CrossRef  CAS  Google Scholar 

  • Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249

    PubMed  CrossRef  CAS  Google Scholar 

  • Gardner RL (1996) Can developmentally significant spatial patterning of the egg be discounted in mammals? Hum Reprod Update 2:3–27

    PubMed  CrossRef  CAS  Google Scholar 

  • Gerbe F, Cox B, Rossant J, Chazaud C (2008) Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev Biol 313:594–602

    PubMed  CrossRef  CAS  Google Scholar 

  • Grabarek JB, Żyżyńska K, Saiz N, Piliszek A, Frankenberg S, Nichols J, Hadjantonakis AK, Plusa B (2012) Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139:129–139

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19:71–88

    PubMed  CrossRef  CAS  Google Scholar 

  • Hadjantonakis AK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:33

    PubMed  CrossRef  Google Scholar 

  • Jedrusik A, Parfitt DE, Guo G, Skamagki M, Grabarek JB, Johnson MH, Robson P, Zernicka-Goetz M (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80

    PubMed  CrossRef  CAS  Google Scholar 

  • Kalmar T, Lim C, Hayward P, Munoz-Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A (2009) Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7:e1000149

    PubMed  CrossRef  Google Scholar 

  • Kelly SJ (1977) Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool 200:365–376

    PubMed  CrossRef  CAS  Google Scholar 

  • Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126:723–732

    CAS  Google Scholar 

  • Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060

    PubMed  CrossRef  CAS  Google Scholar 

  • Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–3360

    PubMed  CrossRef  CAS  Google Scholar 

  • Li L, Arman E, Ekblom P, Edgar D, Murray P, Lonai P (2004) Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131:5277–5286

    PubMed  CrossRef  CAS  Google Scholar 

  • Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci USA 72:1441–1445

    PubMed  CrossRef  CAS  Google Scholar 

  • Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec JF, Zernicka-Goetz M (2009) Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev Biol 331:210–221

    PubMed  CrossRef  CAS  Google Scholar 

  • Messerschmidt DM, Kemler R (2010) Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev Biol 344:129–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    PubMed  CrossRef  CAS  Google Scholar 

  • Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072

    PubMed  CrossRef  CAS  Google Scholar 

  • Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107:6364–6369

    PubMed  CrossRef  CAS  Google Scholar 

  • Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590

    PubMed  CrossRef  CAS  Google Scholar 

  • Murray P, Edgar D (2001) Regulation of the differentiation and behaviour of extra-embryonic endodermal cells by basement membranes. J Cell Sci 114:931–939

    PubMed  CAS  Google Scholar 

  • Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, Yamaki M, Dimos JT, Chen AE, Melton DA, McMahon AP, Eggan K (2010) Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 24:312–326

    PubMed  CrossRef  CAS  Google Scholar 

  • Nichols J, Silva J, Roode M, Smith A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136:3215–3222

    PubMed  CrossRef  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283

    PubMed  CrossRef  CAS  Google Scholar 

  • Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–929

    PubMed  CrossRef  CAS  Google Scholar 

  • Nowotschin S, Hadjantonakis AK (2010) Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr Opin Genet Dev 20:420–427

    PubMed  CrossRef  CAS  Google Scholar 

  • Palmieri SL, Peter W, Hess H, Scholer HR (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166:259–267

    PubMed  CrossRef  CAS  Google Scholar 

  • Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13:117–123

    PubMed  CrossRef  CAS  Google Scholar 

  • Plusa B, Hadjantonakis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434:391–395

    PubMed  CrossRef  CAS  Google Scholar 

  • Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091

    PubMed  CrossRef  CAS  Google Scholar 

  • Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403

    Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629

    PubMed  CrossRef  CAS  Google Scholar 

  • Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    PubMed  CrossRef  CAS  Google Scholar 

  • Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25:2534–2542

    PubMed  CrossRef  CAS  Google Scholar 

  • Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH (1995) Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 9:1883–1895

    PubMed  CrossRef  CAS  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102

    PubMed  CrossRef  CAS  Google Scholar 

  • Suwinska A, Czolowska R, Ozdzenski W, Tarkowski AK (2008) Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev Biol 322:133–144

    PubMed  CrossRef  CAS  Google Scholar 

  • Tarkowski AK, Wroblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180

    PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218

    PubMed  CrossRef  CAS  Google Scholar 

  • Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 19:831–844

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilder PJ, Kelly D, Brigman K, Peterson CL, Nowling T, Gao QS, McComb RD, Capecchi MR, Rizzino A (1997) Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev Biol 192:614–629

    PubMed  CrossRef  CAS  Google Scholar 

  • Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836

    PubMed  CrossRef  CAS  Google Scholar 

  • Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX (2002) Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 251:27–44

    PubMed  CrossRef  CAS  Google Scholar 

  • Yuan H, Corbi N, Basilico C, Dailey L (1995) Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9:2635–2645

    PubMed  CrossRef  CAS  Google Scholar 

  • Zernicka-Goetz M, Huang S (2010) Stochasticity versus determinism in development: a false dichotomy? Nat Rev Genet 11:743–744

    PubMed  CrossRef  CAS  Google Scholar 

  • Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jerome Artus, Silvia Munoz-Descalzo and Marilena Papaioannou for discussions and comments on this review. Work in our laboratory is supported by the HFSP, NIH, and NYSTEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Katerina Hadjantonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xenopoulos, P., Kang, M., Hadjantonakis, AK. (2012). Cell Lineage Allocation Within the Inner Cell Mass of the Mouse Blastocyst. In: Kubiak, J. (eds) Mouse Development. Results and Problems in Cell Differentiation, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30406-4_10

Download citation