Nano to Micro and Macro Characterization

Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The commercial applications of materials often involve the structuring of nanoparticles into micro or macro structures. For example, the polymer particles are generally structured to form monoliths which can then be used as chromatography columns. Similarly, inorganic nanoparticles are fused together to form macroporous networks which can be used as catalyst supports or high strength and low density metallic foams. Organic particles also form continuous films on the substrates on which they are applied or coated. Characterization of such structures for their porosity, surface roughness, uniformity as well as stability is required as these characteristics drive the applications of these networks. A number of examples describing these features are presented in the following sections.

Keywords

Glass Transition Temperature Polymer Particle Glycidyl Methacrylate Polymer Monolith Macro Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mittal, V., Matsko, N.B., Butte, A., Morbidelli, M.: Macromol. React. Eng. 2, 215–221 (2008)CrossRefGoogle Scholar
  2. 2.
    Mittal, V., Matsko, N.B., Butte, A., Morbidelli, M.: Macromol. Mater. Eng. 293, 491–502 (2008)CrossRefGoogle Scholar
  3. 3.
    Rohr, T., Hilder, E.F., Donovan, J.J., Svec, F., Frechet, J.M.J.: Macromolecules 36, 1677–1684 (2003)CrossRefGoogle Scholar
  4. 4.
    Tsujioka, N., Hira, N., Aoki, S., Tanaka, N., Hosoya, K.: Macromolecules 38, 9901–9903 (2005)CrossRefGoogle Scholar
  5. 5.
    Sun, G.-Y., Shi, Q.-H., Sun, Y.: J. Chromatogr. A 1061, 159–165 (2004)CrossRefGoogle Scholar
  6. 6.
    Tripp, J.A., Svec, F., Frechet, J.M.J.: J. Comb. Chem. 3, 216–223 (2001)CrossRefGoogle Scholar
  7. 7.
    Pan, Z., Zou, H., Mo, W., Huang, X., Wu, R.: Anal. Chim. Acta 466, 141–150 (2002)CrossRefGoogle Scholar
  8. 8.
    Sun, T., Wang, G., Feng, L., Liu, B., Ma, Y., Jiang, L., Zhu, D.: Angewandte Chemie. Int. Ed. 43, 357–360 (2004)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Xue, L., Han, Y.: Langmuir 21, 5–8 (2005)CrossRefGoogle Scholar
  10. 10.
    Mittal, V., Matsko, N.B.: Open Surf. Sci. J. 1, 14–19 (2009)Google Scholar
  11. 11.
    Cao, Z., Sun, Y.: ACS Appl. Mater. Interfaces 1, 494–504 (2009)CrossRefGoogle Scholar
  12. 12.
    Jiang, L., Zhao, Y., Zhai, J.: Angewandte Chemie. Int. Ed. 43, 4338–4341 (2004)CrossRefGoogle Scholar
  13. 13.
    Lin, J–.J., Chu, C–.C., Chiang, M.-L., Tsai, W.-C.: Adv. Mater. 18, 3248–3252 (2006)CrossRefGoogle Scholar
  14. 14.
    Akartuna, I., Studart, A.R., Tervoort, E., Gauckler, L.J.: Adv. Mater. 20, 4714–4718 (2008)CrossRefGoogle Scholar
  15. 15.
    Mihi, A., Calvo, M.E., Anta, J.A., Mguez, H.: J. Phys. Chem. C 112, 13–17 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentThe Petroleum InstituteAbu DhabiUAE
  2. 2.Institute for Electron Microscopy and Fine Structure ResearchTechnical University of GrazGrazAustria

Personalised recommendations