Designing Incentive Schemes Based on Intervention: The Case of Imperfect Monitoring

  • Jaeok Park
  • Mihaela van der Schaar
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 75)


In this paper, we propose a class of incentive schemes based on intervention. We develop a general game-theoretic framework for the design of intervention schemes under imperfect monitoring. We examine a model of slotted multiaccess communication to illustrate our framework. In this model, an intervention device monitors the behavior of agents for a period called the test phase and takes an intervention action which affects agents for the remaining period called the intervention phase. We analyze the problems of designing an optimal intervention rule given a length of the test phase and choosing an optimal length of the test phase. Intervention schemes can induce cooperative behavior by applying intervention following signals with a high likelihood of deviation. Increasing the length of the test phase has two counteracting effects: It improves the quality of signals, but at the same time it weakens the impact of intervention due to increased delay.


intervention incentive schemes slotted multiaccess communication game theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garg, R., Kamra, A., Khurana, V.: A game-theoretic approach towards congestion control in communication networks. Comput. Commun. Rev. 32, 47–61 (2002)CrossRefGoogle Scholar
  2. 2.
    Park, J., van der Schaar, M.: Stackelberg contention games in multiuser networks. EURASIP J. Adv. Sig. Process., article ID 305978, 15 pages (2009)Google Scholar
  3. 3.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using Stackelberg routing strategies. IEEE/ACM Trans. Netw. 5, 161–173 (1997)CrossRefGoogle Scholar
  4. 4.
    Ma, R.T., Misra, V., Rubenstein, D.: An analysis of generalized slotted-Aloha protocols. IEEE/ACM Trans. Netw. 17, 936–949 (2009)CrossRefGoogle Scholar
  5. 5.
    Su, Y., van der Schaar, M.: A new perspective on multi-user power control games in interference channels. IEEE Trans. Wireless Commun. 8, 2910–2919 (2009)CrossRefGoogle Scholar
  6. 6.
    Başar, T., Srikant, R.: A Stackelberg network game with a large number of followers. J. Opt. Theory Applicat. 115, 479–490 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bloem, M., Alpcan, T., Başar, T.: A Stackelberg game for power control and channel allocation in cognitive radio networks. In: Proc. ValueTools (2007)Google Scholar
  8. 8.
    Hallgren, M.M., McAdams, A.K.: The economic efficiency of Internet public goods. In: McKnight, L.W., Bailey, J.P. (eds.) Internet Economics, pp. 455–478. MIT Press, Cambridge (1997)Google Scholar
  9. 9.
    Mailath, G., Samuelson, L.: Repeated Games and Reputations: Long-run Relationships. Oxford Univ. Press, Oxford (2006)CrossRefGoogle Scholar
  10. 10.
    Kandori, M.: Social norms and community enforcement. Rev. Econ. Stud. 59, 63–80 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Univ. Press, Oxford (1995)zbMATHGoogle Scholar
  12. 12.
    Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  13. 13.
    Massey, J.L., Mathys, P.: The collision channel without feedback. IEEE Trans. Inf. Theory 31, 192–204 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2012

Authors and Affiliations

  • Jaeok Park
    • 1
  • Mihaela van der Schaar
    • 1
  1. 1.University of California, Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations