Advertisement

Numerical Simulation of Catalytic Reactors by Molecular-Based Models

  • Olaf Deutschmann
  • Steffen Tischer
Chapter
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 4)

Abstract

Investigations in the field of high-temperature catalysis often reveal complex interactions of heterogeneous, homogeneous, and radical chemistry coupled with mass and heat transfer. The fundamental aspects as well as several applications of high-temperature catalysis are covered in the light of these interactions. Benefits of molecular-based numerical simulations are discussed. Furthermore, this chapter looks at challenges associated with parameter estimation.

Keywords

Optimal Control Problem Solid Oxide Fuel Cell Oxidative Dehydrogenation Short Contact Time Catalytic Partial Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank J. Warnatz in memoriam (University of Heidelberg), L.D. Schmidt (University of Minnesota), and R.J. Kee (Colorado School of Mines) for fruitful collaborations and stimulating discussions.

References

  1. 1.
    D. A. Hickman and Lanny D. Schmidt. Synthesis gas formation by direct oxidation of methane over monoliths. Journal of Catalysis, 138(1):267–282, 1992.Google Scholar
  2. 2.
    O. Deutschmann and L. D. Schmidt. Modeling the partial oxidation of methane in a short-contact-time reactor. American Institute of Chemical Engineering Journal, 44(11):2465–2477, 1998.CrossRefGoogle Scholar
  3. 3.
    Marylin C. Huff and Lanny D. Schmidt. Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times. Journal of Catalysis, 149:127–141, 1993.CrossRefGoogle Scholar
  4. 4.
    D. K. Zerkle, M. D. Allendorf, M. Wolf, and O. Deutschmann. Understanding homogeneous and heterogeneous contributions to the platinum-catalyzed partial oxidation of ethane in a short-contact-time reactor. Journal of Catalysis, 196(1):18–39, 2000.CrossRefGoogle Scholar
  5. 5.
    H. Y. Zhu, R. J. Kee, V. M. Janardhanan, O. Deutschmann, and D. G. Goodwin. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society, 152(12):A2427–A2440, 2005.CrossRefGoogle Scholar
  6. 6.
    E. S. Hecht, G. K. Gupta, H. Y. Zhu, A. M. Dean, R. J. Kee, L. Maier, and O. Deutschmann. Methane reforming kinetics within a Ni-YSZ SOFC anode support. Applied Catalysis a-General, 295(1):40–51, 2005.CrossRefGoogle Scholar
  7. 7.
    J. Windmann, J. Braun, P. Zacke, S. Tischer, O. Deutschmann, and J. Warnatz. Impact of the inlet flow distribution on the light-off behavior of a 3-way catalytic converter. SAE Technical Paper, 2003-01-0937, 2003.Google Scholar
  8. 8.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley & Sons, Inc., New York, 2nd edition, 2001.Google Scholar
  9. 9.
    S.V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.zbMATHGoogle Scholar
  10. 10.
    Jürgen Warnatz, R. W. Dibble, and Ulrich Maas. Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer-Verlag, New York, 1996.Google Scholar
  11. 11.
    R. E. Hayes and Stan T. Kolaczkowski. Introduction to Catalytic Combustion. Gordon and Breach Science Publ., Amsterdam, 1997.Google Scholar
  12. 12.
    R.J. Kee, M.E. Coltrin, and P. Glarborg. Chemically Reacting Flow. Wiley-Interscience, 2003.Google Scholar
  13. 13.
    O. Deutschmann. Computational fluid dynamics simulation of catalytic reactors: Chapter 6.6. In G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, editors, Handbook of Heterogeneous Catalysis, 2nd Ed. Wiley-VCH, 2007.Google Scholar
  14. 14.
    Eliseo Ranzi, A. Sogaro, P. Gaffuri, G. Pennati, C. K. Westbrook, and W. J. Pitz. A new comprehensive reaction mechanism for combustion of hydrocarbon fuels. Combustion and Flame, 99:201–211, 1994.Google Scholar
  15. 15.
    Michael E. Coltrin, Robert J. Kee, and F. M. Rupley. SURFACE CHEMKIN (Version 4.0): A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface - Gas-Phase Interface, SAND91-8003B. Sandia National Laboratories, 1991.Google Scholar
  16. 16.
    A. B. Mhadeshwar, H. Wang, and D. G. Vlachos. Thermodynamic consistency in microkinetic development of surface reaction mechanisms. Journal of Physical Chemistry B, 107(46):12721–12733, 2003.CrossRefGoogle Scholar
  17. 17.
    W. R. Williams, C. M. Marks, and L. D. Schmidt. Steps in the reaction H2 + O2 \(\rightleftharpoons \) H2O on Pt - OH desorption at high-temperatures. Journal of Physical Chemistry, 96(14):5922–5931, 1992.CrossRefGoogle Scholar
  18. 18.
    B. Hellsing, B. Kasemo, and V. P. Zhdanov. Kinetics of the hydrogen-oxygen reaction on platinum. Journal of Catalysis, 132:210–228, 1991.CrossRefGoogle Scholar
  19. 19.
    Jürgen Warnatz. Resolution of gas phase and surface combustion chemistry into elementary reactions (invited lecture). Proceedings of the Combustion Institute, 24:553–579, 1992.Google Scholar
  20. 20.
    M. Rinnemo, O. Deutschmann, F. Behrendt, and B. Kasemo. Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum. Combustion and Flame, 111(4):312–326, 1997.CrossRefGoogle Scholar
  21. 21.
    Götz Veser. Experimental and theoretical investigation of h2 oxidation in a high-temperature catalytic microreactor. Chemical Engineering Science, 56:1265–1273, 2001.CrossRefGoogle Scholar
  22. 22.
    P.-A. Bui, D. G. Vlachos, and P. R. Westmoreland. Modeling ignition of catalytic reactors with detailed surface kinetics and transport: Oxidation of h2/air mixtures over platinum surfaces. Industrial & Engineering Chemistry Research, 36(7):2558–2567, 1997.CrossRefGoogle Scholar
  23. 23.
    Johan C. G. Andrae and Pehr H. Björnbom. Wall effects of laminar hydrogen flames over platinum and inert surfaces. American Institute of Chemical Engineering Journal, 46(7):1454–1460, 2000.Google Scholar
  24. 24.
    J. Mai, W. von Niessen, and A. Blumen. The CO+O2 reaction on metal surfaces. simulation and mean-field theory: The influence of diffusion. Journal of Chemical Physics, 93:3685–3692, 1990.Google Scholar
  25. 25.
    V. P. Zhdanov and B. Kasemo. Steady-state kinetics of co oxidation on pt: extrapolation from 10-10 to 1 bar. Applied Surface Science, 74(2):147–164, 1994.CrossRefGoogle Scholar
  26. 26.
    P. Aghalayam, Y. K. Park, and D. G. Vlachos. A detailed surface reaction mechanism for CO oxidation on Pt. Proceedings of the Combustion Institute, 28:1331–1339, 2000.CrossRefGoogle Scholar
  27. 27.
    Olaf Deutschmann, R. Schmidt, Frank Behrendt, and Jürgen Warnatz. Numerical modeling of catalytic ignition. Proceedings of the Combustion Institute, 26:1747–1754, 1996.Google Scholar
  28. 28.
    G. Veser, J. Frauhammer, Lanny D. Schmidt, and G. Eigenberger. Catalytic ignition during methane oxidation on platinum: Experiments and modeling. In Studies in Surface Science and Catalysis 109, pages 273–284. 1997.Google Scholar
  29. 29.
    P.-A. Bui, D. G. Vlachos, and P. R. Westmoreland. Catalytic ignition of methane/oxygen mixtures over platinum surfaces: comparison of detailed simulations and experiments. Surface Science, 386(2–3):L1029–L1034, 1997.CrossRefGoogle Scholar
  30. 30.
    U. Dogwiler, P. Benz, and J. Mantzaras. Two-dimensional modelling for catalytically stabilized combustion of a lean methane-air mixture with elementary homogeneous and heterogeneous chemical reactions. Combustion and Flame, 116(1):243, 1999.Google Scholar
  31. 31.
    Preeti Aghalayam, Young K. Park, N. Fernandes, V. Papavassiliou, A. B. Mhadeshwar, and Dionisios G. Vlachos. A C1 mechanism for methane oxidation on platinum. Journal of Catalysis, 213(1):23–38, 2003.Google Scholar
  32. 32.
    D. A. Hickman and Lanny D. Schmidt. Steps in CH4 oxidation on Pt and Rh surfaces: High-temperature reactor simulations. American Institute of Chemical Engineering Journal, 39:1164–1176, 1993.Google Scholar
  33. 33.
    M. Huff and L. D. Schmidt. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short-contact times. Journal of Physical Chemistry, 97(45):11815–11822, 1993.CrossRefGoogle Scholar
  34. 34.
    Marylin C. Huff, I. P. Androulakis, J. H. Sinfelt, and S. C. Reyes. The contribution of gas-phase reactions in the Pt-catalyzed conversion of ethane-oxygen mixtures. Journal of Catalysis, 191:46–45, 2000.Google Scholar
  35. 35.
    F. Donsi, K. A. Williams, and L. D. Schmidt. A multistep surface mechanism for ethane oxidative dehydrogenation on Pt- and Pt/Sn-coated monoliths. Industrial & Engineering Chemistry Research, 44(10):3453–3470, 2005.CrossRefGoogle Scholar
  36. 36.
    R. Schwiedernoch, S. Tischer, C. Correa, and O. Deutschmann. Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic, monolith. Chemical Engineering Science, 58(3–6):633–642, 2003.CrossRefGoogle Scholar
  37. 37.
    D. Chatterjee, O. Deutschmann, and J. Warnatz. Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions, 119:371–384, 2001.CrossRefGoogle Scholar
  38. 38.
    B. Ruf, F. Behrendt, O. Deutschmann, and J. Warnatz. Simulation of homoepitaxial growth on the diamond (100) surface using detailed reaction mechanisms. Surface Science, 352:602–606, 1996.CrossRefGoogle Scholar
  39. 39.
    S. J. Harris and D. G. Goodwin. Growth on the reconstructed diamond (100) surface. Journal of Physical Chemistry, 97(1):23–28, 1993.CrossRefGoogle Scholar
  40. 40.
    S. Romet, M. F. Couturier, and T. K. Whidden. Modeling of silicon dioxide chemical vapor deposition from tetraethoxysilane and ozone. Journal of the Electrochemical Society, 148(2):G82–G90, 2001.CrossRefGoogle Scholar
  41. 41.
    C. D. Scott, A. Povitsky, C. Dateo, T. Gokcen, P. A. Willis, and R. E. Smalley. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor. Journal of Nanoscience and Nanotechnology, 3(1–2):63–73, 2003.CrossRefGoogle Scholar
  42. 42.
    Alessandra Beretta, Pio Forzatti, and Eliseo Ranzi. Production of olefins via oxidative dehydrogenation of propane in autothermal conditions. Journal of Catalysis, 184(2):469–478, 1999.CrossRefGoogle Scholar
  43. 43.
    A. Beretta and P. Forzatti. High-temperature and short-contact-time oxidative dehydrogenation of ethane in the presence of Pt/Al2O3 and BaMnAl11O19 catalysts. Journal of Catalysis, 200(1):45–58, 2001.CrossRefGoogle Scholar
  44. 44.
    A. Beretta, E. Ranzi, and P. Forzatti. Oxidative dehydrogenation of light paraffins in novel short contact time reactors. experimental and theoretical investigation. Chemical Engineering Science, 56(3):779–787, 2001.Google Scholar
  45. 45.
    R. Subramanian and L. D. Schmidt. Renewable olefins from biodiesel by autothermal reforming. Angewandte Chemie-International Edition, 44(2):302–305, 2005.CrossRefGoogle Scholar
  46. 46.
    J. J. Krummenacher and L. D. Schmidt. High yields of olefins and hydrogen from decane in short contact time reactors: rhodium versus platinum. Journal of Catalysis, 222(2):429–438, 2004.CrossRefGoogle Scholar
  47. 47.
    Lanny D. Schmidt, J. Siddall, and M. Bearden. New ways to make old chemicals. American Institute of Chemical Engineering Journal, 46:1492–1495, 2000.Google Scholar
  48. 48.
    L. L. Raja, Robert J. Kee, and L. R. Petzold. Simulation of the transient, compressible, gas-dynamic, behavior of catalytic-combustion ignition in stagnation flows. Proceedings of the Combustion Institute, 27:2249–2257, 1998.Google Scholar
  49. 49.
    D. Papadias, L. Edsberg, and Pehr H. Björnbom. Simplified method of effectiveness factor calculations for irregular geometries of washcoats. a general case in a 3d concentration field. Catalysis Today, 60(1–2):11–20, 2000.Google Scholar
  50. 50.
    F. Keil. Diffusion und Chemische Reaktionen in der Gas-Feststoff-Katalyse. Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
  51. 51.
    F. J. Keil. Diffusion and reaction in porous networks. Catalysis Today, 53:245–258, 2000.CrossRefGoogle Scholar
  52. 52.
    Ulrich Maas and S. Pope. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88:239–264, 1992.Google Scholar
  53. 53.
    X. Yan and U. Maas. Intrinsic low-dimensional manifolds of heterogeneous combustion processes. Proceedings of the Combustion Institute, 28:1615–1621, 2000.CrossRefGoogle Scholar
  54. 54.
    R. G. Susnow, A. M. Dean, W. H. Green, P. Peczak, and L. Broadbelt. Rate - based construction of kinetic models for complex systems. Journal of Physical Chemistry A, 101:3731–3740, 1997.CrossRefGoogle Scholar
  55. 55.
    S. Tischer, C. Correa, and O. Deutschmann. Transient three-dimensional simulations of a catalytic combustion monolith using detailed models for heterogeneous and homogeneous reactions and transport phenomena. Catalysis Today, 69(1–4):57–62, 2001.CrossRefGoogle Scholar
  56. 56.
    S. Tischer and O. Deutschmann. Recent advances in numerical modeling of catalytic monolith reactors. Catalysis Today, 105(3–4):407–413, 2005.CrossRefGoogle Scholar
  57. 57.
    O. Deutschmann, S. Tischer, S. Kleditzsch, V.M. Janardhanan, C. Correa, D. Chatterjee, N. Mladenov, and H. D. Minh. DETCHEM software package. www.detchem.com, Karlsruhe, 2.2 edition, 2009.
  58. 58.
    C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, and A. Inauen. Turbulent catalytically stabilized combustion of hydrogen/air mixtures in entry channel flows. Combustion and Flame, 140(1-2):70–92, 2005.CrossRefGoogle Scholar
  59. 59.
    H. P. A. Calis, J. Nijenhuis, B. C. Paikert, F. M. Dautzenberg, and C. M. van den Bleek. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science, 56(4):1713–1720, 2001.CrossRefGoogle Scholar
  60. 60.
    C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, B. Kaeppeli, and A. Inauen. An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum. Proceedings of the Combustion Institute, 29:1031–1038, 2002.CrossRefGoogle Scholar
  61. 61.
    C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, B. Kaeppeli, B. Hemmerling, and A. Stampanoni. An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum. Combustion and Flame, 128(4):340–368, 2002.CrossRefGoogle Scholar
  62. 62.
    H. D. Minh, H. G. Bock, S. Tischer, and O. Deutschmann. Optimization of two-dimensional flows with homogeneous and heterogeneously catalyzed gas-phase reactions. Aiche Journal, 54(9):2432–2440, 2008.CrossRefGoogle Scholar
  63. 63.
    H. D. Minh, H. G. Bock, S. Tischer, and O. Deutschmann. Fast solution for large-scale 2-d convection-diffusion, reacting flows. Computational Science and Its Applications - Iccsa 2008, Pt 1, Proceedings, 5072:1121–1130 1266, 2008.Google Scholar
  64. 64.
    M. von Schwerin, O. Deutschmann, and V. Schulz. Process optimization of reactives systems by partially reduced sqp methods. Computers & Chemical Engineering, 24(1):89–97, 2000.CrossRefGoogle Scholar
  65. 65.
    L. D. Schmidt, O. Deutschmann, and C. T. Goralski. Modeling the partial oxidation of methane to syngas at millisecond contact times. In Natural Gas Conversion V, volume 119 of Studies in Surface Science and Catalysis, pages 685–692. 1998.Google Scholar
  66. 66.
    R. Horn, K. A. Williams, N. J. Degenstein, and L. D. Schmidt. Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations. Journal of Catalysis, 242(1):92–102, 2006.CrossRefGoogle Scholar
  67. 67.
    R. Quiceno, J. Perez-Ramirez, J. Warnatz, and O. Deutschmann. Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: Detailed gas-phase and surface chemistries coupled with 3d flow field simulations. Applied Catalysis a-General, 303(2):166–176, 2006.CrossRefGoogle Scholar
  68. 68.
    B. T. Schädel, M. Duisberg, and O. Deutschmann. Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catalysis Today, 142(1–2):42–51, 2009.CrossRefGoogle Scholar
  69. 69.
    Marylin C. Huff and Lanny D. Schmidt. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short contact times. Journal of Physical Chemistry, 97:11815–11822, 1993.CrossRefGoogle Scholar
  70. 70.
    A. S. Bodke, D. A. Olschki, L. D. Schmidt, and E. Ranzi. High selectivities to ethylene by partial oxidation of ethane. Science, 285(5428):712–715, 1999.CrossRefGoogle Scholar
  71. 71.
    D. K. Zerkle, M. D. Allendorf, M. Wolf, and O. Deutschmann. Modeling of on-line catalyst addition effects in a short contact time reactor. Proceedings of the Combustion Institute, 28:1365–1372, 2000.CrossRefGoogle Scholar
  72. 72.
    J. J. Krummenacher, K. N. West, and L. D. Schmidt. Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. Journal of Catalysis, 215(2):332–343, 2003.CrossRefGoogle Scholar
  73. 73.
    E. C. Wanat, K. Venkataraman, and L. D. Schmidt. Steam reforming and water–gas shift of ethanol on Rh and Rh-Ce catalysts in a catalytic wall reactor. Applied Catalysis a-General, 276(1–2):155–162, 2004.CrossRefGoogle Scholar
  74. 74.
    G. A. Deluga, J. R. Salge, L. D. Schmidt, and X. E. Verykios. Renewable hydrogen from ethanol by autothermal reforming. Science, 303(5660):993–997, 2004.CrossRefGoogle Scholar
  75. 75.
    M. Hartmann, L. Maier, and O. Deutschmann. Catalytic partial oxidation of iso-octane over rhodium catalysts: An experimental, modeling, and simulation study. Combustion and Flame, 157:1771–1782, 2010.CrossRefGoogle Scholar
  76. 76.
    O. R. Inderwildi, D. Lebiedz, O. Deutschmann, and J. Warnatz. Coverage dependence of oxygen decomposition and surface diffusion on rhodium (111): A DFT study. Journal of Chemical Physics, 122(3), 2005.Google Scholar
  77. 77.
    A. Heyden, B. Peters, A. T. Bell, and F. J. Keil. Comprehensive DFT study of nitrous oxide decomposition over Fe-ZSM-5(vol 109, pg 1866, 2005). Journal of Physical Chemistry B, 109(10):4801–4804, 2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations