Advertisement

The Operads As and A

  • Jean-Louis Loday
  • Bruno Vallette
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 346)

Abstract

In this chapter, we first treat in detail the operad encoding the category of associative algebras along the lines of the preceding chapters. This is a particularly important example, because associative algebras are everywhere in mathematics, and because it will serve as a toy-model in the theory of operads. We prove that this operad is Koszul and we make explicit its Koszul dual and its Koszul resolution. In this way, we recover the notion of homotopy associative algebra introduced by Jim Stasheff. Finally, we give the Homotopy Transfer Theorem for this kind of algebras.

Keywords

Chain Complex Associative Algebra Homology Class Algebra Structure Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. BM03a.
    C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003), no. 4, 805–831. MathSciNetzbMATHCrossRefGoogle Scholar
  2. BM03b.
    D. Blanc and M. Markl, Higher homotopy operations, Math. Z. 245 (2003), no. 1, 1–29. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Con85.
    Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. (1985), no. 62, 257–360. Google Scholar
  4. FL91.
    Z. Fiedorowicz and J.-L. Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 57–87. MathSciNetzbMATHCrossRefGoogle Scholar
  5. HK91.
    J. Huebschmann and T. Kadeishvili, Small models for chain algebras, Math. Z. 207 (1991), no. 2, 245–280. MathSciNetzbMATHCrossRefGoogle Scholar
  6. Kad80.
    T. V. Kadeišvili, On the theory of homology of fiber spaces, Uspekhi Mat. Nauk 35 (1980), no. 3(213), 183–188. International Topology Conference (Moscow State Univ., Moscow, 1979). Google Scholar
  7. Kad82.
    —, The algebraic structure in the homology of an A(∞)-algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), no. 2, 249–252 (1983). MathSciNetGoogle Scholar
  8. Kel01.
    Bernhard Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1–35 (electronic). MathSciNetzbMATHGoogle Scholar
  9. Kra66.
    David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431–449. MathSciNetzbMATHCrossRefGoogle Scholar
  10. KS00.
    M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. Google Scholar
  11. Lod82.
    —, Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra 24 (1982), no. 2, 179–202. MathSciNetCrossRefGoogle Scholar
  12. Lod98.
    —, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chap. 13 by the author in collaboration with Teimuraz Pirashvili. Google Scholar
  13. Lod12.
    —, Geometric diagonals for the Stasheff associahedron and products of A-infinity algebras. Google Scholar
  14. LQ84.
    J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. MathSciNetGoogle Scholar
  15. LR12.
    —, Permutads, Journal of Combinatorial Theory A (2012). Google Scholar
  16. Mac95.
    I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications. zbMATHGoogle Scholar
  17. Mar06.
    —, Transferring A (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo (2) Suppl. (2006), no. 79, 139–151. Google Scholar
  18. Mas58.
    W. S. Massey, Some higher order cohomology operations, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 145–154. Google Scholar
  19. May69.
    —, Matric Massey products, J. Algebra 12 (1969), 533–568. MathSciNetzbMATHCrossRefGoogle Scholar
  20. Mer99.
    S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Internat. Math. Res. Notices (1999), no. 3, 153–164. Google Scholar
  21. ML95.
    —, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1975 edition. zbMATHGoogle Scholar
  22. Pir02a.
    —, On the PROP corresponding to bialgebras, Cah. Topol. Géom. Différ. Catég. 43 (2002), no. 3, 221–239. MathSciNetzbMATHGoogle Scholar
  23. Sta63.
    Jim Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275–292; ibid. 108 (1963), 293–312. MathSciNetzbMATHCrossRefGoogle Scholar
  24. Sta97b.
    Jim Stasheff, From operads to “physically” inspired theories, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, 1997, pp. 53–81. CrossRefGoogle Scholar
  25. Sta10.
    —, A twisted tale of cochains and connections, Georgian Math. J. 17 (2010), no. 1, 203–215. MathSciNetzbMATHGoogle Scholar
  26. Tsy83.
    B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217–218. MathSciNetzbMATHGoogle Scholar
  27. Zha12.
    Young Zhang, Homotopy transfer theorem for linearly compatible di-algebras, preprint (2012). Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-Louis Loday
    • 1
  • Bruno Vallette
    • 2
  1. 1.IRMA, CNRS et Université de StrasbourgStrasbourgFrance
  2. 2.Lab. de Mathématiques J.A. DieudonnéUniversité de Nice-Sophia AntipolisNiceFrance

Personalised recommendations