Methods to Prove Koszulity of an Algebra

  • Jean-Louis Loday
  • Bruno Vallette
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 346)


After having introduced the notion of Koszul algebra in the preceding chapter, we give here methods to prove that an algebra is Koszul together with constructions to produce new Koszul algebras.


Canonical Projection Monoidal Category Quadratic Algebra Free Associative Algebra Black Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bac83.
    J. Backelin, A distributiveness property of augmented algebras, and some related homological results, Ph.D. thesis, Stockholm Univ., 1983. Google Scholar
  2. BCK+66.
    A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod−p lower central series and the Adams spectral sequence, Topology 5 (1966), 331–342. MathSciNetzbMATHCrossRefGoogle Scholar
  3. Ber78.
    G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178–218. MathSciNetCrossRefGoogle Scholar
  4. BF85.
    J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 2, 85–97. MathSciNetzbMATHGoogle Scholar
  5. Buc06.
    B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symbolic Comput. 41 (2006), no. 3-4, 475–511, Translated from the 1965 German original by Michael P. Abramson. MathSciNetzbMATHCrossRefGoogle Scholar
  6. Man87.
    Yu. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 191–205. MathSciNetzbMATHCrossRefGoogle Scholar
  7. Man88.
    —, Quantum groups and noncommutative geometry, Université de Montréal Centre de Recherches Mathématiques, Montreal, QC, 1988. Google Scholar
  8. New42.
    M. H. A. Newman, On theories with a combinatorial definition of “equivalence”, Ann. of Math. (2) 43 (1942), 223–243. MathSciNetzbMATHCrossRefGoogle Scholar
  9. PP05.
    A. Polishchuk and L. Positselski, Quadratic algebras, University Lecture Series, vol. 37, American Mathematical Society, Providence, RI, 2005. zbMATHGoogle Scholar
  10. Pri70.
    S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MathSciNetzbMATHCrossRefGoogle Scholar
  11. Sta97a.
    R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. zbMATHCrossRefGoogle Scholar
  12. Ufn95.
    V. A. Ufnarovski, Combinatorial and asymptotic methods in algebra, Algebra VI, Encyclopedia Math. Sci., vol. 57, Springer, Berlin, 1995, pp. 1–196. Google Scholar
  13. Wan67.
    J. S. P. Wang, On the cohomology of the mod−2 Steenrod algebra and the non-existence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480–490. MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-Louis Loday
    • 1
  • Bruno Vallette
    • 2
  1. 1.IRMA, CNRS et Université de StrasbourgStrasbourgFrance
  2. 2.Lab. de Mathématiques J.A. DieudonnéUniversité de Nice-Sophia AntipolisNiceFrance

Personalised recommendations