Skip to main content

(Co)Homology of Algebras over an Operad

  • Chapter
Algebraic Operads

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 346))

  • 3328 Accesses

Abstract

In this chapter, we introduce the André–Quillen cohomology and homology for algebras over an operad, which provides us with homological invariants. It plays a role in many classification problems, like for instance deformation theory. We use the resolutions provided by the Koszul duality theory to make explicit small chain complexes which computes it.

Les mathématiques ne sont pas une moindre immensité que la mer.

Victor Hugo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. André, Homologie des algèbres commutatives, Springer-Verlag, Berlin, 1974, Die Grundlehren der mathematischen Wissenschaften, Band 206.

    Book  MATH  Google Scholar 

  2. David Balavoine, Deformations of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 207–234.

    Chapter  Google Scholar 

  3. —, Homology and cohomology with coefficients, of an algebra over a quadratic operad, J. Pure Appl. Algebra 132 (1998), no. 3, 221–258.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8 (1968), 314–323.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Barr and J. Beck, Homology and standard constructions, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, Berlin, 1969, pp. 245–335.

    Chapter  Google Scholar 

  6. G. Barnich, R. Fulp, T. Lada, and J. Stasheff, The sh Lie structure of Poisson brackets in field theory, Comm. Math. Phys. 191 (1998), no. 3, 585–601.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.-J. Baues, M. Jibladze, and A. Tonks, Cohomology of monoids in monoidal categories, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) (Providence, RI), Contemp. Math., vol. 202, Amer. Math. Soc., 1997, pp. 137–165.

    Chapter  Google Scholar 

  8. H.-J. Baues, E. G. Minian, and B. Richter, Crossed modules over operads and operadic cohomology, K-Theory 31 (2004), no. 1, 39–69.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Ciocan-Fontanine and M. Kapranov, Derived Quot schemes, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 3, 403–440.

    MathSciNet  MATH  Google Scholar 

  10. Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. (1985), no. 62, 257–360.

    Google Scholar 

  11. A. Dzhumadil’daev, Cohomologies and deformations of right-symmetric algebras, J. Math. Sci. (New York) 93 (1999), no. 6, 836–876, Algebra, 11.

    Article  MathSciNet  MATH  Google Scholar 

  12. Alessandra Frabetti, Dialgebra (co)homology with coefficients, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 67–103.

    Chapter  Google Scholar 

  13. —, Koszul duality of operads and homology of partition posets, in “Homotopy theory and its applications (Evanston, 2002)”, Contemp. Math. 346 (2004), 115–215.

    Article  MathSciNet  Google Scholar 

  14. —, Théorie des opérades de Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal 13 (2006), no. 2, 237–312.

    Article  MathSciNet  MATH  Google Scholar 

  15. —, Modules over operads and functors, Lecture Notes in Mathematics, vol. 1967, Springer-Verlag, Berlin, 2009.

    Book  MATH  Google Scholar 

  16. I. Galvez-Carrillo, A. Tonks, and B. Vallette, Homotopy Batalin-Vilkovisky algebras, Journal Noncommutative Geometry (2009), arXiv:0907.2246, 49 pp.

  17. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288.

    Article  MathSciNet  MATH  Google Scholar 

  18. —, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59–103.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. G. Goerss and M. J. Hopkins, André-Quillen (co)-homology for simplicial algebras over simplicial operads, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999), Contemp. Math., vol. 265, Amer. Math. Soc., Providence, RI, 2000, pp. 41–85.

    Chapter  Google Scholar 

  20. E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, hep-th/9403055 (1994).

  21. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Gerstenhaber and A. A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices (1995), no. 3, 141–153 (electronic).

    Google Scholar 

  23. D. K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962), 191–204.

    Article  MathSciNet  MATH  Google Scholar 

  24. Vladimir Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291–3323, see also Erratum arXiv:math/0309453.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Hirsch and J. Millès, Curved Koszul duality theory, arXiv:1008.5368 (2010).

  26. Eric Hoffbeck, Γ-homology of algebras over an operad, Algebr. Geom. Topol. 10 (2010), no. 3, 1781–1806. MR 2683753 (2011f:16022)

    Article  MathSciNet  MATH  Google Scholar 

  27. —, Obstruction theory for algebras over an operad, ArXiv e-prints (2010).

    Google Scholar 

  28. Max Karoubi, Homologie cyclique et K-théorie, Astérisque (1987), no. 149, 147.

    Google Scholar 

  29. —, Deformation quantization after Kontsevich and Tamarkin, Déformation, quantification, théorie de Lie, Panor. Synthèses, vol. 20, Soc. Math. France, Paris, 2005, pp. 19–62.

    Google Scholar 

  30. —, Deformation theory. I [Draft], http://www.math.ksu.edu/~soibel/Book-vol1.ps, 2010.

  31. Muriel Livernet, Homotopie rationnelle des algèbres sur une opérade, Prépublication de l’Institut de Recherche Mathématique Avancée [Prepublication of the Institute of Advanced Mathematical Research], 1998/32, Université Louis Pasteur Département de Mathématique Institut de Recherche Mathématique Avancée, Strasbourg, 1998, Thèse, Université Louis Pasteur (Strasbourg I), Strasbourg, 1998.

    Google Scholar 

  32. —, On a plus-construction for algebras over an operad, K-Theory 18 (1999), no. 4, 317–337.

    Article  MathSciNet  Google Scholar 

  33. —, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chap. 13 by the author in collaboration with Teimuraz Pirashvili.

    Google Scholar 

  34. J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139–158.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Lambrechts, V. Turchin, and I. Volić, The rational homology of the space of long knots in codimension >2, Geom. Topol. 14 (2010), no. 4, 2151–2187.

    Article  MathSciNet  MATH  Google Scholar 

  36. Martin Markl, A cohomology theory for A(m)-algebras and applications, J. Pure Appl. Algebra 83 (1992), no. 2, 141–175.

    Article  MathSciNet  MATH  Google Scholar 

  37. Joan Millès, The Koszul complex is the cotangent complex, arXiv:1004.0096 (2010).

  38. —, André-Quillen cohomology of algebras over an operad, Adv. Math. 226 (2011), no. 6, 5120–5164. MR 2775896

    Article  MathSciNet  Google Scholar 

  39. —, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  40. J. E. McClure and J. H. Smith, A solution of Deligne’s Hochschild cohomology conjecture, Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 153–193.

    Chapter  Google Scholar 

  41. S. A. Merkulov and B. Vallette, Deformation theory of representations of prop(erad)s. I, J. Reine Angew. Math. 634 (2009), 51–106.

    MathSciNet  MATH  Google Scholar 

  42. —, Deformation theory of representations of prop(erad)s. II, J. Reine Angew. Math. 636 (2009), 123–174.

    MathSciNet  MATH  Google Scholar 

  43. A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  44. —, Deformations of Lie algebra structures, J. Math. Mech. 17 (1967), 89–105.

    MathSciNet  MATH  Google Scholar 

  45. —, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, RI, 1970, pp. 65–87.

    Google Scholar 

  46. C. W. Rezk, Spaces of algebra structures and cohomology of operads, Ph.D. thesis, MIT, 1996.

    Google Scholar 

  47. Alan Robinson, Gamma homology, Lie representations and E multiplications, Invent. Math. 152 (2003), no. 2, 331–348.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Robinson and S. Whitehouse, Operads and Γ-homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002), no. 2, 197–234.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. P. Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461–486 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  50. —, The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131 (2009), no. 4, 945–980.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Schlessinger and J. Stasheff, The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra 38 (1985), no. 2-3, 313–322.

    Article  MathSciNet  MATH  Google Scholar 

  52. —, The intrinsic bracket on the deformation complex of an associative algebra, J. Pure Appl. Algebra 89 (1993), no. 1-2, 231–235.

    Article  MathSciNet  MATH  Google Scholar 

  53. V. Tourtchine, On the homology of the spaces of long knots, Advances in topological quantum field theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 179, Kluwer Acad. Publ., Dordrecht, 2004, pp. 23–52.

    Chapter  Google Scholar 

  54. P. van der Laan, Operads up to Homotopy and Deformations of Operad Maps, arXiv:math.QA/0208041 (2002).

  55. S. O. Wilson, Free Frobenius algebra on the differential forms of a manifold, arXiv:0710.3550 (2007).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loday, JL., Vallette, B. (2012). (Co)Homology of Algebras over an Operad. In: Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30362-3_12

Download citation

Publish with us

Policies and ethics