Data- and Resource-Aware Conformance Checking of Business Processes

  • Massimiliano de Leoni
  • Wil M. P. van der Aalst
  • Boudewijn F. van Dongen
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 117)


Process mining is not restricted to process discovery and also includes conformance checking, i.e., checking whether observed behavior recorded in the event log matches modeled behavior. Many organizations have descriptive or normative models that do not adequately describe the actual processes. Therefore, a variety of techniques for conformance checking have been proposed. However, all of these techniques focus on the control-flow and abstract from data and resources. This paper describes an approach that aligns event log and model while taking all perspectives into account (i.e., also data and resources). This way it is possible to quantify conformance and analyze differences between model and reality. The approach has been implemented in ProM and evaluated using a variety of model-log combinations.


Business Process Priority Queue Optimal Alignment Process Instance Execution Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)CrossRefGoogle Scholar
  3. 3.
    Rozinat, A., van der Aalst, W.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33, 64–95 (2008)CrossRefGoogle Scholar
  4. 4.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute (MGI) (May 2011)Google Scholar
  5. 5.
    van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T., Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R., Gaaloul, W., van Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., ter Hofstede, A., Hoogland, J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., La Rosa, M., Maggi, F., Malerba, D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H.R., zur Muehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Seguel Pérez, H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner, C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Weijters, A., van der Aalst, W., de Medeiros, A.A.: Process Mining with the Heuristics Miner-algorithm. Technical report, Eindhoven University of Technology, Eindhoven, BETA Working Paper Series, WP 166 (2006)Google Scholar
  7. 7.
    de Medeiros, A.A., Weijters, A., van der Aalst, W.: Genetic Process Mining: an Experimental Evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)CrossRefGoogle Scholar
  8. 8.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance Checking. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J.: Process Compliance Measurement Based on Behavioural Profiles. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 499–514. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Rozinat, A., Veloso, M., van der Aalst, W.: Using hidden markov models to evaluate the quality of discovered process models. Technical report, BPM Center Report BPM-08-10 (2008)Google Scholar
  11. 11.
    Cook, J., Wolf, A.: Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model. ACM Transactions on Software Engineering and Methodology (TOSEM) 8, 147–176 (1999)CrossRefGoogle Scholar
  12. 12.
    Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance Checking Using Cost-Based Fitness Analysis. In: IEEE International Enterprise Distributed Object Computing Conference, pp. 55–64. IEEE Computer Society (2011)Google Scholar
  13. 13.
    Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. Journal of the ACM (JACM) 32, 505–536 (1985)CrossRefGoogle Scholar
  14. 14.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P., van Hee, K., van der Werf, J.M.E.M., Verdonk, M.: Auditing 2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer 43(3), 90–93 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Massimiliano de Leoni
    • 1
  • Wil M. P. van der Aalst
    • 1
  • Boudewijn F. van Dongen
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations