Advertisement

Dsharp: Fast d-DNNF Compilation with sharpSAT

  • Christian Muise
  • Sheila A. McIlraith
  • J. Christopher Beck
  • Eric I. Hsu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7310)

Abstract

Knowledge compilation is a compelling technique for dealing with the intractability of propositional reasoning. One particularly effective target language is Deterministic Decomposable Negation Normal Form (d-DNNF). We exploit recent advances in #SAT solving in order to produce a new state-of-the-art CNF → d-DNNF compiler: Dsharp. Empirical results demonstrate that Dsharp is generally an order of magnitude faster than c2d, the de facto standard for compiling to d-DNNF, while yielding a representation of comparable size.

Keywords

Unit Propagation Versus Versus Versus Versus Model Counting Versus Versus Versus Versus Versus Decision Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning. In: International Joint Conference on Artificial Intelligence, vol. 18, pp. 1194–1201 (2003)Google Scholar
  2. 2.
    Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for exact inference. International Journal of Approximate Reasoning 42, 4–20 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Darwiche, A.: New advances in compiling CNF to decomposable negational normal form. In: Proceedings of European Conference on Artificial Intelligence (2004)Google Scholar
  5. 5.
    Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation. In: International Joint Conference On Artificial Intelligence, pp. 156–162 (2005)Google Scholar
  6. 6.
    Jha, A., Suciu, D.: Knowledge compilation meets database theory: compiling queries to decision diagrams. In: Proceedings of the 14th International Conference on Database Theory, pp. 162–173. ACM (2011)Google Scholar
  7. 7.
    Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.: Fast d-DNNF compilation with sharpSAT. In: Workshop on Abstraction, Reformulation, and Approximation, AAAI 2010 (2010)Google Scholar
  8. 8.
    Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by counting models on compiled d-DNNF representations. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling, pp. 141–150 (2005)Google Scholar
  9. 9.
    Siddiqi, S., Huang, J.: Probabilistic sequential diagnosis by compilation. In: Tenth International Symposium on Artificial Intelligence and Mathematics (2008)Google Scholar
  10. 10.
    Thurley, M.: sharpSAT – Counting Models with Advanced Component Caching and Implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Muise
    • 1
  • Sheila A. McIlraith
    • 1
  • J. Christopher Beck
    • 2
  • Eric I. Hsu
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations