Advertisement

Predicting Good Propagation Methods for Constraint Satisfaction

  • Craig D. S. Thompson
  • Michael C. Horsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7310)

Abstract

Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it can be difficult to determine a priori which solving method is best suited to a problem. We explore the use of machine learning to predict which solving method will be most effective for a given problem. Our investigation studies the problem of attribute selection for CSPs, and supervised learning to classify CSP instances drawn from four distinct CSP classes. We limit our study to the choice of two well-known, but simple, CSP solvers. We show that the average performance of the resulting solver is very close to the average performance of a CSP solver based on an oracle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Régin, J.: A filtering algorithm for constraints of difference in csps. In: Proceedings of the National Conference on Artificial Intelligence, p. 362. John Wiley & Sons Ltd. (1994)Google Scholar
  2. 2.
    Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: Proceedings of the National Conference on Artificial Intelligence, pp. 359–366. John Wiley & Sons Ltd. (1998)Google Scholar
  3. 3.
    Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Sabin, D., Freuder, E.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of the 11th European Conference on Artificial Intelligence, pp. 125–129. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Bessière, C., Régin, J.: MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32(1), 565–606 (2008)zbMATHGoogle Scholar
  7. 7.
    Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Constraints 1(1), 7–43 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Epstein, S., Wallace, R., Freuder, E., Li, X.: Learning propagation policies. In: Proceedings of the Second International Workshop on Constraint Propagation And Implementation, pp. 1–15 (2005)Google Scholar
  10. 10.
    Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to Select Solution Strategies in Constraint Programming. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 222–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    El Sakkout, H., Wallace, M., Richards, E.: An Instance of Adaptive Constraint Propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Stergiou, K.: Heuristics for dynamically adapting propagation. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 485–489. IOS Press (2008)Google Scholar
  13. 13.
    Nadel, B.: Constraint satisfaction algorithms. Computational Intelligence 5(4), 188–224 (1989)CrossRefGoogle Scholar
  14. 14.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  15. 15.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  16. 16.
    Gomes, C., Shmoys, D.: Completing quasigroups or latin squares: A structured graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and Generalizations, pp. 22–39 (2002)Google Scholar
  17. 17.
    Thompson, C.D.S.: Metareasoning about propagators for constraint satisfaction. Master’s thesis, Department of Computer Science, University of Saskatchewan (2011)Google Scholar
  18. 18.
    Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 359–366 (2000)Google Scholar
  19. 19.
    Gent, I., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In: Proceedings of the 13th National Conference on Artificial Intelligence, pp. 246–252 (1996)Google Scholar
  20. 20.
    Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Craig D. S. Thompson
    • 1
  • Michael C. Horsch
    • 1
  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations