Advertisement

Applying Latent Semantic Analysis to Tag-Based Community Recommendations

  • Aysha Akther
  • Heung-Nam Kim
  • Majdi Rawashdeh
  • Abdulmotaleb El Saddik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7310)

Abstract

With the explosive growth of social communities, users of social Web systems have experienced considerable difficulty with discovering communities relevant to their interests. In this paper we address the problem of recommending communities (or groups) to individual users. We regard this problem as tag-based personalized searches. Based on social tags used by members of communities, we first represent communities in a low-dimensional space, the so-called latent semantic space, by using Latent Semantic Analysis. Then, for recommending communities to a given user, we capture how each community is relevant to both that user’s personal tag usage and other community members’ tagging patterns in the latent space. Our evaluation on the CiteULike dataset shows that our approach can significantly improve the recommendation quality.

Keywords

Community Recommendations Latent Semantic Analysis Recommender Systems Social Community 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baatarjav, E.-A., Phithakkitnukoon, S., Dantu, R.: Group Recommendation System for Facebook. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 211–219. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, W.-Y., Zhang, D., Chang, E.Y.: Combinational Collaborative Filtering for Personalized Community Recommendation. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 115–123 (2008)Google Scholar
  4. 4.
    Chen, W.-Y., Chu, J.-C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative Filtering for Orkut Communities: Discovery of User Latent Behavior. In: 18th International Conference on World Wide Web, pp. 681–690 (2009)Google Scholar
  5. 5.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  6. 6.
    Deshpande, M., Karypis, G.: Item-based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  7. 7.
    Lee, D.H., Brusilovsky, P.: Interest Similarity of Group Members: The Case Study of Citeulike. In: The WebSci 2010: Extending the Frontiers of Society On-Line (2010)Google Scholar
  8. 8.
    Li, X., Guo, L., Zhao, Y.E.: Tag-based Social Interest Discovery. In: 17th International Conference on World Wide Web, pp. 675–684 (2008)Google Scholar
  9. 9.
    Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evaluating Similarity Measures for Emergent Semantics of Social Tagging. In: 18th International Conference on World Wide Web, pp. 641–650 (2009)Google Scholar
  10. 10.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42 (2007)Google Scholar
  11. 11.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in Recommender System–A Case Study. In: ACM WebKDD 2000 Web Mining for E-Commerce Workshop (2000)Google Scholar
  12. 12.
    Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web Search with Folksonomy-Based User and Document Profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Vasuki, V., Natarajan, N., Lu, Z., Savas, B., Dhillon, I.: Scalable Affiliation Recommendation using Auxiliary Networks. ACM Transactions on Intelligent Systems and Technology 3(1), Article 3 (2011)Google Scholar
  14. 14.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring Folksonomy for Personalized Search. In: 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–162 (2008)Google Scholar
  15. 15.
    Zheng, N., Li, Q., Liao, S., Zhang, L.: Which Photo Groups Should I Choose? A Comparative Study of Recommendation Algorithms in Flickr. Journal of Information Science 36(6), 733–750 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aysha Akther
    • 1
  • Heung-Nam Kim
    • 1
  • Majdi Rawashdeh
    • 1
  • Abdulmotaleb El Saddik
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations