Advertisement

Train Marshalling Is Fixed Parameter Tractable

  • Leo Brueggeman
  • Michael Fellows
  • Rudolf Fleischer
  • Martin Lackner
  • Christian Komusiewicz
  • Yiannis Koutis
  • Andreas Pfandler
  • Frances Rosamond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7288)

Abstract

The train marshalling problem is about reordering the cars of a train using as few auxiliary rails as possible. The problem is known to be NP-complete. We show that it is fixed parameter tractable (FPT) with the number of auxiliary rails as parameter.

Keywords

Interval Graph Active Segment Clique Number Discrete Apply Mathematic Proper Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acta Mathematicae Applicatae Sinica 1(2), 91–105 (1978)Google Scholar
  2. 2.
    Dalhaus, E., Horak, P., Miller, M., Ryan, J.F.: Algorithms for combinatorial problems related to train marshalling. CiteSeerX (10.1.1.37.4090) (2000), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4090
  3. 3.
    Dalhaus, E., Horak, P., Miller, M., Ryan, J.F.: The train marshalling problem. Discrete Applied Mathematics 103(1-3), 41–54 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhu, Y., Zhu, R.: Sequence reconstruction under some order-type constraints. Scientia Sinica 26(7), 702–713 (1983)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Leo Brueggeman
    • 1
  • Michael Fellows
    • 2
  • Rudolf Fleischer
    • 3
    • 4
  • Martin Lackner
    • 5
  • Christian Komusiewicz
    • 6
  • Yiannis Koutis
    • 7
  • Andreas Pfandler
    • 5
  • Frances Rosamond
    • 2
  1. 1.University of CaliforniaSanta CruzUSA
  2. 2.Charles Darwin UniversityDarwinAustralia
  3. 3.SCS and IIPLFudan UniversityShanghaiChina
  4. 4.GUtechMuscatOman
  5. 5.Vienna University of TechnologyAustria
  6. 6.TU BerlinGermany
  7. 7.University of Puerto RicoPuerto Rico

Personalised recommendations