Mad at Edge Crossings? Break the Edges!

  • Till Bruckdorfer
  • Michael Kaufmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7288)


One of the main principles for the effective visualization of graphs is the avoidance of edge crossings. Around this problem, very active research has been performed with works ranging from combinatorics, to algorithmics, visualization effects, to psychological user studies. Recently, the pragmatic approach has been proposed to avoid crossings by drawing the edges only partially. Unfortunately, no formal model and efficient algorithms have been formulated to this end. We introduce the concept for drawings of graphs with partially drawn edges (PED). Therefore we consider graphs with and without given embedding and characterize PEDs with concepts like symmetry and homogeneity. For graphs without embedding we formulate a sufficient condition to guarantee a symmetric homogeneous PED, and identify a nontrivial graph class which has a symmetric homogeneous PED. For graphs with given layout we consider the variants of maximizing the shortest partially drawn edge and the total length respectively.


Intersection Point Small Circle Intersection Graph Maximal Match Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)Google Scholar
  2. 2.
    Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Vis. Comput. Graph. 1(1), 16–28 (1995)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Erten, C., Estrella-Balderrama, A., Fowler, J.J., Frati, F., Geyer, M., Gutwenger, C., Hong, S.H., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings and universal pointsets. Algorithmica 60(3), 569–592 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating Partially Drawn Links for Directed Graph Edges. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 226–237. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1277–1284 (2008)CrossRefGoogle Scholar
  6. 6.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Eppstein, D.: Separating Thickness from Geometric Thickness. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 150–161. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw., Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  9. 9.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)CrossRefGoogle Scholar
  10. 10.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  11. 11.
    Hui, P., Schaefer, M., Štefankovič, D.: Train Tracks and Confluent Drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 318–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Koffka, K.: Principles of Gestalt Psychology. International Library of Psychology, Philosophy and Scientific Method (1999),
  14. 14.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Peng, D., Lua, N., Chen, W., Peng, Q.: Sideknot: Revealing relation patterns for graph visualization. To appear in IEEE Pacific Visualization Symposium (2012)Google Scholar
  16. 16.
    Rusu, A., Fabian, A.J., Jianu, R., Rusu, A.: Using the gestalt principle of closure to alleviate the edge crossing problem in graph drawings. In: International Conference on Information Visualisation, pp. 488–493 (2011)Google Scholar
  17. 17.
    yWorks GmbH: yFiles graph library,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Till Bruckdorfer
    • 1
  • Michael Kaufmann
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany

Personalised recommendations