On the Complexity of Rolling Block and Alice Mazes

  • Markus Holzer
  • Sebastian Jakobi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7288)


We investigate the computational complexity of two maze problems, namely rolling block and Alice mazes. Simply speaking, in the former game one has to roll blocks through a maze, ending in a particular game situation, and in the latter one, one has to move tokens of variable speed through a maze following some prescribed directions. It turns out that when the number of blocks or the number of tokens is not restricted (unbounded), then the problem of solving such a maze becomes PSPACE-complete. Hardness is shown via a reduction from the nondeterministic constraint logic (NCL) of [E. D. Demaine, R. A. Hearn: A uniform framework or modeling computations as games. Proc. CCC, 2008] to the problems in question. By using only blocks of size 2×1×1, and no forbidden squares, we improve a previous result of [K. Buchin, M. Buchin: Rolling block mazes are PSPACE-complete. J. Inform. Proc., 2012] on rolling block mazes to best possible. Moreover, we also consider bounded variants of these maze games, i.e., when the number of blocks or tokens is bounded by a constant, and prove close relations to variants of graph reachability problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Barrington, D.A.M., Chakraborty, T., Datta, S., Roy, S.: Planar and grid graph reachability problems. Theory Comput. Syst. 45(4), 675–723 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Buchin, K., Buchin, M.: Rolling block mazes are PSPACE-complete. J. Inform. Proc. (to appear, 2012)Google Scholar
  3. 3.
    Buchin, K., Buchin, M., Demaine, E.D., Demaine, M.L., El-Khechen, D., Fekete, S.P., Knauer, C., Schulz, A., Taslakian, P.: On rolling cube puzzles. In: Proc. CCCG, Ottawa, Ontario, Canada, pp. 141–144 (2007)Google Scholar
  4. 4.
    Demaine, E.D., Hearn, R.A.: A uniform framework for modeling computations as games. In: Proc. Conf. Comput. Compl., pp. 149–162. IEEE Computer Society Press, College Park (2008)Google Scholar
  5. 5.
    Gardner, M.: Mathematical games column. Scientific American 209(6) (1963), 213(5) (1965), 232(3) (1975)Google Scholar
  6. 6.
    Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters (2009)Google Scholar
  7. 7.
    Holzer, M., Jakobi, S.: Grid graphs with diagonal edges and the complexity of Xmas mazes. IFIG Research Report 1201, Institut für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany (2012)Google Scholar
  8. 8.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  9. 9.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), Article 17 (24 pages) (2008)Google Scholar
  10. 10.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4(2), 177–192 (1970)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Holzer
    • 1
  • Sebastian Jakobi
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations