Advertisement

The Byzantine Brides Problem

  • Swan Dubois
  • Sébastien Tixeuil
  • Nini Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7288)

Abstract

We investigate the hardness of establishing as many stable marriages (that is, marriages that last forever) in a population whose memory is placed in some arbitrary state with respect to the considered problem, and where traitors try to jeopardize the whole process by behaving in a harmful manner. On the negative side, we demonstrate that no solution that is completely insensitive to traitors can exist, and we propose a protocol for the problem that is optimal with respect to the traitor containment radius.

Keywords

Variant Function Transient Fault Theoretical Computer Science Stable Marriage Byzantine Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbaro, N.: Diary of the Siege of Constantinople. Translation by John Melville-Jones, New York (1453)Google Scholar
  2. 2.
    Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  5. 5.
    Dolev, S.: Self-stabilization. MIT Press (March 2000)Google Scholar
  6. 6.
    Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)Google Scholar
  7. 7.
    Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer Society (2002)Google Scholar
  8. 8.
    Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS, p. 162 (2003)Google Scholar
  11. 11.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theoretical Computer Science (TCS) 410(14), 1336–1345 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ghosh, S., Gupta, A., Hakan, M., Sriram, K., Pemmaraju, V.: Self-stabilizing dynamic programming algorithms on trees. In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 11.1–11.15 (1995)Google Scholar
  13. 13.
    Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree network. In: ICDCS, pp. 20–26 (2003)Google Scholar
  14. 14.
    Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm for 1-maximal matching in trees. In: PDPTA, pp. 797–803 (2006)Google Scholar
  15. 15.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation algorithm for the maximum matching problem. Theoretical Computer Science (TCS) 412(40), 5515–5526 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. J. ACM 51(5), 780–799 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Daliot, A., Dolev, D.: Self-stabilization of Byzantine Protocols. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)Google Scholar
  19. 19.
    Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Containment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Swan Dubois
    • 1
  • Sébastien Tixeuil
    • 2
  • Nini Zhu
    • 3
  1. 1.UPMC Sorbonne Universités & InriaFrance
  2. 2.UPMC Sorbonne Universités & Institut Universitaire de FranceFrance
  3. 3.UPMC Sorbonne UniversitésFrance

Personalised recommendations