Skip to main content

Dynamic Programming Approach for Exact Decision Rule Optimization

  • Chapter

Part of the Intelligent Systems Reference Library book series (ISRL,volume 42)

Abstract

This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository.

Keywords

  • Decision rules
  • dynamic programming
  • length
  • coverage

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. on Very Large Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  2. Alkhalid, A., Chikalov, I., Moshkov, M.: On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 438–445. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Alkhalid, A., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of dynamic programming as a new tool for decision tree optimization. In: S. Ramanna, R.J. Howlett, L.C. Jain (eds.) Emerging Paradigms in Machine Learning. Springer (to appear, 2012)

    Google Scholar 

  4. Boryczka, U., Kozak, J.: New algorithms for generation decision trees – Ant-Miner and its modifications. Foundations of Computational Intelligence 6, 229–262 (2009)

    Google Scholar 

  5. Chikalov, I., Moshkov, M., Zielosko, B.: Online Learning Algorithm for Ensemble of Decision Rules. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 310–313. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  6. Chikalov, I.V.: On Algorithm for Constructing of Decision Trees with Minimal Number of Nodes. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 139–143. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml (cited July 2, 2011)

  8. Grünwald, P.D.: The Minimum Description Length Principle. Foreword by Jorma Rissanen. In: Adaptive Computation and Machine Learning. MIT Press (2007)

    Google Scholar 

  9. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2000)

    CrossRef  Google Scholar 

  10. Liu, B., Abbass, H.A., McKay, B.: Classification rule discovery with ant colony optimization. In: Proc. IEEE/WIC Int. Conf. on Intelligent Agent Technology, IAT 2003, pp. 83–88. IEEE Computer Society, Washington, DC (2003)

    CrossRef  Google Scholar 

  11. Michalski, S.R., Pietrzykowski, J.: iAQ: A program that discovers rules. AAAI-07 AI Video Competition. In: 22nd AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada (2007) http://videolectures.net/aaai07_michalski_iaq/ (cited February 27, 2012)

  12. Moshkov, M., Chikalov, I.: On algorithm for constructing of decision trees with minimal depth. Fundamenta Informaticae 41, 295–299 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets: Theory and Applications. SCI, vol. 145. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  14. Moshkov, M., Zielosko, B.: Combinatorial Machine Learning: A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)

    CrossRef  MATH  Google Scholar 

  15. Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  16. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  17. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177, 41–73 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  19. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    CrossRef  MATH  Google Scholar 

  20. Skowron, A.: Rough sets in KDD. In: Shi, Z., Faltings, B., Musem, M. (eds.) 16th World Computer Congress. Proc. Conf. Intelligent Information Processing, pp. 1–17. Publishing House of Electronic Industry, Beijing (2000)

    Google Scholar 

  21. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  22. Ślęzak, D., Wróblewski, J.: Order-Based Genetic Algorithms for the Search of Approximate Entropy Reducts. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 308–311. Springer, Heidelberg (2003)

    Google Scholar 

  23. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Information Science and Statistics. Springer, New York (2005)

    MATH  Google Scholar 

  24. Wróblewski, J.: Finding minimal reducts using genetic algorithm. In: Proc. 2nd Annual Join Conf. on Information Sciences, Wrightsville Beach, NC, pp. 186–189 (1995)

    Google Scholar 

  25. Zielosko, B., Moshkov, M., Chikalov, I.: Optimization of decision rules based on methods of dynamic programming. Vestnik of Lobachevsky State University of Nizhni Novgorod 6, 195–200 (2010) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talha Amin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amin, T., Chikalov, I., Moshkov, M., Zielosko, B. (2013). Dynamic Programming Approach for Exact Decision Rule Optimization. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30344-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30344-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30343-2

  • Online ISBN: 978-3-642-30344-9

  • eBook Packages: EngineeringEngineering (R0)