Abstract
This chapter is devoted to the study of an extension of dynamic programming approach that allows sequential optimization of exact decision rules relative to the length and coverage. It contains also results of experiments with decision tables from UCI Machine Learning Repository.
Keywords
- Decision rules
- dynamic programming
- length
- coverage
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. on Very Large Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)
Alkhalid, A., Chikalov, I., Moshkov, M.: On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 438–445. Springer, Heidelberg (2010)
Alkhalid, A., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of dynamic programming as a new tool for decision tree optimization. In: S. Ramanna, R.J. Howlett, L.C. Jain (eds.) Emerging Paradigms in Machine Learning. Springer (to appear, 2012)
Boryczka, U., Kozak, J.: New algorithms for generation decision trees – Ant-Miner and its modifications. Foundations of Computational Intelligence 6, 229–262 (2009)
Chikalov, I., Moshkov, M., Zielosko, B.: Online Learning Algorithm for Ensemble of Decision Rules. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 310–313. Springer, Heidelberg (2011)
Chikalov, I.V.: On Algorithm for Constructing of Decision Trees with Minimal Number of Nodes. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 139–143. Springer, Heidelberg (2001)
Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml (cited July 2, 2011)
Grünwald, P.D.: The Minimum Description Length Principle. Foreword by Jorma Rissanen. In: Adaptive Computation and Machine Learning. MIT Press (2007)
Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2000)
Liu, B., Abbass, H.A., McKay, B.: Classification rule discovery with ant colony optimization. In: Proc. IEEE/WIC Int. Conf. on Intelligent Agent Technology, IAT 2003, pp. 83–88. IEEE Computer Society, Washington, DC (2003)
Michalski, S.R., Pietrzykowski, J.: iAQ: A program that discovers rules. AAAI-07 AI Video Competition. In: 22nd AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada (2007) http://videolectures.net/aaai07_michalski_iaq/ (cited February 27, 2012)
Moshkov, M., Chikalov, I.: On algorithm for constructing of decision trees with minimal depth. Fundamenta Informaticae 41, 295–299 (2000)
Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets: Theory and Applications. SCI, vol. 145. Springer, Heidelberg (2008)
Moshkov, M., Zielosko, B.: Combinatorial Machine Learning: A Rough Set Approach. SCI, vol. 360. Springer, Heidelberg (2011)
Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)
Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Information Sciences 177, 41–73 (2007)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)
Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
Skowron, A.: Rough sets in KDD. In: Shi, Z., Faltings, B., Musem, M. (eds.) 16th World Computer Congress. Proc. Conf. Intelligent Information Processing, pp. 1–17. Publishing House of Electronic Industry, Beijing (2000)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Ślęzak, D., Wróblewski, J.: Order-Based Genetic Algorithms for the Search of Approximate Entropy Reducts. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 308–311. Springer, Heidelberg (2003)
Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Information Science and Statistics. Springer, New York (2005)
Wróblewski, J.: Finding minimal reducts using genetic algorithm. In: Proc. 2nd Annual Join Conf. on Information Sciences, Wrightsville Beach, NC, pp. 186–189 (1995)
Zielosko, B., Moshkov, M., Chikalov, I.: Optimization of decision rules based on methods of dynamic programming. Vestnik of Lobachevsky State University of Nizhni Novgorod 6, 195–200 (2010) (in Russian)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Amin, T., Chikalov, I., Moshkov, M., Zielosko, B. (2013). Dynamic Programming Approach for Exact Decision Rule Optimization. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30344-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-30344-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30343-2
Online ISBN: 978-3-642-30344-9
eBook Packages: EngineeringEngineering (R0)