Advertisement

jMAF - Dominance-Based Rough Set Data Analysis Framework

  • Jerzy Błaszczyński
  • Salvatore Greco
  • Benedetto Matarazzo
  • Roman Słowiński
  • Marcin Szela̧g
Part of the Intelligent Systems Reference Library book series (ISRL, volume 42)

Abstract

We present a rough set data analysis software jMAF. It employs java Rough Set (jRS) library in which are implemented data analysis methods provided by the (variable consistency) Dominance-based Rough Set Approach (DRSA). The chapter also provides some basics of the DRSA and of its variable consistency extension.

Keywords

Dominance-based rough set approach (DRSA) ordinal classification with monotonicity constraints jMAF software decision rules reducts variable consistency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification – A new scheme for application of dominance-based decision rules. European Journal of Operational Research 181(3), 1030–1044 (2007)MATHCrossRefGoogle Scholar
  2. 2.
    Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: On Variable Consistency Dominance-Based Rough Set Approaches. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 191–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic Variable Consistency Rough Set Approaches. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 126–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 50(7), 979–999 (2009)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic rules. Engineering Applications of Artificial Intelligence 25(2), 284–294 (2012)Google Scholar
  6. 6.
    Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences 181, 987–1002 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2005)Google Scholar
  8. 8.
    Flinkman, M., Michałowski, W., Nilsson, S., Słowiński, R., Susmaga, R., Wilk, S.: Use of rough sets analysis to classify Siberian forest ecosystem according to net primary production of phytomass. INFOR 38, 145–161 (2000)Google Scholar
  9. 9.
    Gorsevski, P.V., Jankowski, P.: Discerning landslide susceptibility using rough sets. Computers, Environment and Urban Systems 32, 53–65 (2008)CrossRefGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Słowiński, R.: A new rough set approach to evaluation of bankruptcy risk. In: Zopounidis, C. (ed.) Operational Tools in the Management of Financial Risks, pp. 121–136. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  11. 11.
    Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making,  ch. 14, pp. 14.1–14.59. Kluwer, Boston (1999)Google Scholar
  12. 12.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation by dominance relations. European J. Operational Research 117, 63–83 (1999)MATHCrossRefGoogle Scholar
  13. 13.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis, European J. of Operational Research 129, 1–47 (2001)MATHCrossRefGoogle Scholar
  14. 14.
    Greco, S., Matarazzo, B., Słowiński, R.: Multicriteria classification. In: Kloesgen, W., Żytkow, J. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 318–328. Oxford University Press (2002)Google Scholar
  15. 15.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based Rough Set Approach to Knowledge Discovery (I) - General Perspective (II) - Extensions and Applications. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, ch. 20, 21, pp. 513–612. Springer, Berlin (2004)Google Scholar
  16. 16.
    Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–563. Springer, Berlin (2005)Google Scholar
  17. 17.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Greco, S., Matarazzo, B., Słowiński, R.: Customer satisfaction analysis based on rough set approach. Zeitschrift für Betriebswirtschaft 16(3), 325–339 (2007)CrossRefGoogle Scholar
  19. 19.
    Greco, S., Matarazzo, B., Słowiński, R.: Financial portfolio decision analysis using Dominance-based Rough Set Approach. Invited paper at the 22nd European Conference on Operational Research (EURO XXII), August 8-11, Prague (2007)Google Scholar
  20. 20.
    Greco, S., Matarazzo, B., Słowiński, R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49, 285–300 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach to interactive multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, ch. 5, Springer, Berlin (2008)Google Scholar
  22. 22.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 304–313. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: Variable Consistency Model of Dominance-Based Rough Sets Approach. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 170–181. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345–361 (2004)CrossRefGoogle Scholar
  25. 25.
    Grzymała-Busse, J.W.: LERS – A system for learning from examples based on rough sets. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  26. 26.
    Michałowski, W., Rubin, S., Słowiński, R., Wilk, S.: Mobile clinical support system for pediatric emergencies. Journal of Decision Support Systems 36, 161–176 (2003)CrossRefGoogle Scholar
  27. 27.
    Michałowski, W., Wilk, S., Farion, K., Pike, J., Rubin, S., Słowiński, R.: Development of a decision algorithm to support emergency triage of scrotal pain and its implementation in the MET system. INFOR 43, 287–301 (2005)Google Scholar
  28. 28.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  30. 30.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 251–271. Wiley, New York (1994)Google Scholar
  31. 31.
    Pawlak, Z., Słowiński, K., Słowiński, R.: Rough classification of patients after highly selective vagotomy for duodenal ulcer. International Journal of Man-Machine Studies 24, 413–433 (1986)CrossRefGoogle Scholar
  32. 32.
    Pawlak, Z., Słowiński, R.: Rough set approach to multi-attribute decision analysis. European J. of Operational Research 72, 443–459 (1994)MATHCrossRefGoogle Scholar
  33. 33.
    Rossi, L., Słowiński, R., Susmaga, R.: Rough set approach to evaluation of stormwater pollution. International Journal of Environment and Pollution 12, 232–250 (1999)Google Scholar
  34. 34.
    Słowiński, R.: Rough Set Learning of Preferential Attitude in Multi-criteria Decision Making. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS (LNAI), vol. 689, pp. 642–651. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  35. 35.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough Set Analysis of Preference-Ordered Data. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 44–59. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  36. 36.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough set based decision support. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 475–527. Springer, New York (2005)Google Scholar
  37. 37.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-Based Rough Set Approach to Reasoning About Ordinal Data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7786. Springer, New York (2009)Google Scholar
  39. 39.
    Słowiński, R., Zopounidis, C.: Application of the rough set approach to evaluation of bankruptcy risk. International Journal of Intelligent Systems in Accounting, Finance and Management 4, 27–41 (1995)Google Scholar
  40. 40.
    Słowiński, R., Zopounidis, C., Dimitras, A.I.: Prediction of company acquisition in Greece by means of the rough set approach. European Journal of Operational Research 100, 1–15 (1997)MATHCrossRefGoogle Scholar
  41. 41.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 43–84. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  42. 42.
    Susmaga, R., Słowiński, R., Greco, S., Matarazzo, B.: Generation of reducts and rules in multi-attribute and multi-criteria classification. Control and Cybernetics 29(4), 969–988 (2000)MATHGoogle Scholar
  43. 43.
    Wilk, S., Słowiński, R., Michałowski, W., Greco, S.: Supporting triage of children with abdominal pain in the emergency room. European Journal of Operational Research 160, 696–709 (2005)MATHCrossRefGoogle Scholar
  44. 44.
    Wong, S.K.M., Ziarko, W.: Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets and Systems 21(3), 357–362 (1987)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Ziarko, W.: Probabilistic approach to rough sets. International Journal of Approximate Reasoning 49(2), 272–284 (2008)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jerzy Błaszczyński
    • 1
  • Salvatore Greco
    • 3
  • Benedetto Matarazzo
    • 3
  • Roman Słowiński
    • 1
    • 2
  • Marcin Szela̧g
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  3. 3.Department of Economics and BusinessUniversity of CataniaCataniaItaly

Personalised recommendations