Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 42))

Abstract

The current chapter is devoted to roughification. In the most general setting, we intend the term roughification to refer to methods/techniques of constructing equivalence/similarity relations adequate for Pawlak-like approximations. Such techniques are fundamental in rough set theory. We propose and investigate novel roughification techniques. We show that using the proposed techniques one can often discern objects indiscernible by original similarity relations, what results in improving approximations. We also discuss applications of the proposed techniques in granulating relational databases and concept learning. The last application is particularly interesting, as it shows an approach to concept learning which is more general than approaches based solely on information and decision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1996)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2002)

    Google Scholar 

  3. Baader, F., Nutt, W.: Basic description logics. In: Baader et al. [2], pp. 47–100

    Google Scholar 

  4. Borgida, A., Lenzerini, M., Rosati, R.: Description logics for databases. In: Baader et al. [2], pp. 472–494

    Google Scholar 

  5. Divroodi, A., Nguyen, L.: On bisimulations for description logics. CoRR abs/1104.1964 (2011) (appeared also in the proceedings of CS&P 2011, pp. 99–110)

    Google Scholar 

  6. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge representation techniques. A rough set approach. STUDFUZZ, vol. 202, Springer (2006)

    Google Scholar 

  7. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI, IJCAI 2001, pp. 145–151 (2000)

    Google Scholar 

  8. Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Proceedings of 26th German Conference on Artificial Intelligence. Springer (2003)

    Google Scholar 

  9. Doherty, P., Szałas, A.: On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Doherty, P., Szałas, A.: A correspondence framework between three-valued logics and similarity-based approximate reasoning. Fundamenta Informaticae 75(1-4) (2007)

    Google Scholar 

  11. Fanizzi, N., d’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts in rough description logics via contextual indiscernibility relations. In: Proceedings of URSW 2008. CEUR Workshop Proceedings, vol. 423 (2008)

    Google Scholar 

  12. Greco, S., Matarazzo, B., Słowiński, R.: Fuzzy Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 283–289. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton (1971), ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf

  14. Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proc. 7th International Conf. on Principles of Knowledge Representation and Reasoning, KR 2000, pp. 167–175. Morgan Kaufmann Pub., Inc. (2000)

    Google Scholar 

  15. Lin, T.: Granular computing on binary relations I, II. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. STUDFUZZ, vol. 17, pp. 107–140. Physica-Verlag (1998)

    Google Scholar 

  16. Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader et al. [2], pp. 5–44

    Google Scholar 

  17. Nguyen, H., Skowron, A., Stepaniuk, J.: Granular computing: A rough set approach. Computational Intelligence 17, 514–544 (2001)

    Article  MathSciNet  Google Scholar 

  18. Nguyen, L.: An efficient tableau prover using global caching for the description logic \(\mathcal{ALC}\). Fundamenta Informaticae 93(1-3), 273–288 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about. Data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  20. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peters, J., Ramanna, S., Skowron, A., Stepaniuk, J., Suraj, Z., Borkowski, M.: Sensor fusion: A rough granular approach. In: Proc. of the Joint 9th International Fuzzy Systems Association World Congress and 20th NAFIPS International Conference, pp. 1367–1371 (2001)

    Google Scholar 

  23. Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, vol. 1-2, pp. 201–227. Physica-Verlag (1999)

    Google Scholar 

  24. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16/1, 57–86 (2001)

    Article  Google Scholar 

  26. Skowron, A., Stepaniuk, J.: Information granules and rough-neurocomputing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, pp. 43–84. Springer (2004)

    Google Scholar 

  27. Ślęzak, D.: Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets. In: FBIT, pp. 437–442. IEEE Computer Society (2007)

    Google Scholar 

  28. Ślęzak, D., Wróblewski, J.: Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 316–323. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, pp. 17–33. Bookwrights, Raleigh (1997)

    Google Scholar 

  30. Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)

    Article  Google Scholar 

  31. Szałas, A.: Second-order reasoning in description logics. Journal of Applied Non-Classical Logics 16(3-4), 517–530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Anh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, L.A., Szałas, A. (2013). Logic-Based Roughification. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30344-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30344-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30343-2

  • Online ISBN: 978-3-642-30344-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics