Abstract

The current chapter is devoted to roughification. In the most general setting, we intend the term roughification to refer to methods/techniques of constructing equivalence/similarity relations adequate for Pawlak-like approximations. Such techniques are fundamental in rough set theory. We propose and investigate novel roughification techniques. We show that using the proposed techniques one can often discern objects indiscernible by original similarity relations, what results in improving approximations. We also discuss applications of the proposed techniques in granulating relational databases and concept learning. The last application is particularly interesting, as it shows an approach to concept learning which is more general than approaches based solely on information and decision systems.

Keywords

Equivalence Relation Relational Database Relational Structure Similarity Relation Description Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1996)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): Description Logic Handbook. Cambridge University Press (2002)Google Scholar
  3. 3.
    Baader, F., Nutt, W.: Basic description logics. In: Baader et al. [2], pp. 47–100Google Scholar
  4. 4.
    Borgida, A., Lenzerini, M., Rosati, R.: Description logics for databases. In: Baader et al. [2], pp. 472–494Google Scholar
  5. 5.
    Divroodi, A., Nguyen, L.: On bisimulations for description logics. CoRR abs/1104.1964 (2011) (appeared also in the proceedings of CS&P 2011, pp. 99–110)Google Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge representation techniques. A rough set approach. STUDFUZZ, vol. 202, Springer (2006)Google Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI, IJCAI 2001, pp. 145–151 (2000)Google Scholar
  8. 8.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Proceedings of 26th German Conference on Artificial Intelligence. Springer (2003)Google Scholar
  9. 9.
    Doherty, P., Szałas, A.: On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Doherty, P., Szałas, A.: A correspondence framework between three-valued logics and similarity-based approximate reasoning. Fundamenta Informaticae 75(1-4) (2007)Google Scholar
  11. 11.
    Fanizzi, N., d’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts in rough description logics via contextual indiscernibility relations. In: Proceedings of URSW 2008. CEUR Workshop Proceedings, vol. 423 (2008)Google Scholar
  12. 12.
    Greco, S., Matarazzo, B., Słowiński, R.: Fuzzy Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 283–289. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton (1971), ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
  14. 14.
    Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proc. 7th International Conf. on Principles of Knowledge Representation and Reasoning, KR 2000, pp. 167–175. Morgan Kaufmann Pub., Inc. (2000)Google Scholar
  15. 15.
    Lin, T.: Granular computing on binary relations I, II. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. STUDFUZZ, vol. 17, pp. 107–140. Physica-Verlag (1998)Google Scholar
  16. 16.
    Nardi, D., Brachman, R.J.: An introduction to description logics. In: Baader et al. [2], pp. 5–44Google Scholar
  17. 17.
    Nguyen, H., Skowron, A., Stepaniuk, J.: Granular computing: A rough set approach. Computational Intelligence 17, 514–544 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nguyen, L.: An efficient tableau prover using global caching for the description logic \(\mathcal{ALC}\). Fundamenta Informaticae 93(1-3), 273–288 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about. Data. Kluwer Academic Publishers, Dordrecht (1991)MATHCrossRefGoogle Scholar
  20. 20.
    Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Peters, J., Ramanna, S., Skowron, A., Stepaniuk, J., Suraj, Z., Borkowski, M.: Sensor fusion: A rough granular approach. In: Proc. of the Joint 9th International Fuzzy Systems Association World Congress and 20th NAFIPS International Conference, pp. 1367–1371 (2001)Google Scholar
  23. 23.
    Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, vol. 1-2, pp. 201–227. Physica-Verlag (1999)Google Scholar
  24. 24.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetMATHGoogle Scholar
  25. 25.
    Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16/1, 57–86 (2001)CrossRefGoogle Scholar
  26. 26.
    Skowron, A., Stepaniuk, J.: Information granules and rough-neurocomputing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, pp. 43–84. Springer (2004)Google Scholar
  27. 27.
    Ślęzak, D.: Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets. In: FBIT, pp. 437–442. IEEE Computer Society (2007)Google Scholar
  28. 28.
    Ślęzak, D., Wróblewski, J.: Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 316–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, pp. 17–33. Bookwrights, Raleigh (1997)Google Scholar
  30. 30.
    Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)CrossRefGoogle Scholar
  31. 31.
    Szałas, A.: Second-order reasoning in description logics. Journal of Applied Non-Classical Logics 16(3-4), 517–530 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations