Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 42))

Abstract

Support vector techniques were proposed by Vapnik as an alternative to neural networks for solving non-linear problems. The concepts of margins in support vector techniques provides a natural relationship with the rough set theory. This chapter describes rough set theoretic extensions of support vector technologies for classification, prediction, and clustering. The theoretical formulations of rough support vector machines, rough support vector regression, and rough support vector clustering are supported with a summary of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asharaf, S., Shevade, S.K., Murty, N.M.: Rough support vector clustering. Pattern Recognition 38(10), 1779–1783 (2005)

    Article  MATH  Google Scholar 

  2. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.N.: Support Vector Clustering. Journal of Machine Learning Research 2(2), 125–137 (2001)

    Google Scholar 

  3. Boser, B.E., Guyon, I., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proc. 5th Annual Workshop Computational Learning Theory, pp. 144–152. ACM, New York (1992)

    Google Scholar 

  4. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  5. Cristianini, N.: Support vector and kernel methods for pattern recognition (2003), http://www.support-vector.net/tutorial.html

  6. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley-Interscience, New York (2000)

    Google Scholar 

  7. Hoffmann, A.: Vc learning theory and support vector machines (2003), http://www.cse.unsw.edu.au/~cs9444/Notes02/Achim-Week11.pdf

  8. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: A stepwise procedure for building and training a neural network. In: Neurocomputing: Algorithms, Architectures and Applications. Springer, Heidelberg (1990)

    Google Scholar 

  9. Lingras, P.: Applications of rough patterns. In: Rough Sets in Data Mining and Knowledge Discovery, vol. 2, pp. 369–384. Springer (1998)

    Google Scholar 

  10. Lingras, P.: Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomputing Journal 36, 29–44 (2001)

    Article  MATH  Google Scholar 

  11. Lingras, P., Butz, C.J.: Interval set classifiers using support vector machines. In: Proc. the North American Fuzzy Inform Processing Socety Conference, pp. 707–710. Computer Society Press, Washington, DC (2004)

    Google Scholar 

  12. Lingras, P., Butz, C.J.: Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Information Sciences 177, 3298–3782 (2007)

    Article  Google Scholar 

  13. Lingras, P., Butz, C.J.: Rough support vector regression. European Journal of Operational Research 206, 445–455 (2010)

    Article  MATH  Google Scholar 

  14. Lingras, P., Butz, C.J.: Conservative and aggressive rough svr modeling. Theoretical Computer Science Journal Section on Theory of Natural Computing 412(42), 5885–5901(2011)

    Google Scholar 

  15. Lingras, P., Davies, C.: Applications of rough genetic algorithms. Computational Intelligence: An International Journal 17(3), 435–445 (2001)

    Google Scholar 

  16. Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear prediction of chaotic time series using support vector machines. In: Principe, N.M.J., Giles, L., Wilson, E. (eds.) IEEE Workshop on Neural Networks for Signal Process, vol. VII, pp. 511–519. IEEE Computer Society Press, Washington, DC (1997)

    Google Scholar 

  17. Muller, K.R., Smola, A., Ratsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with support vector machines. In: ICANN, pp. 999–1004 (1997)

    Google Scholar 

  18. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences  11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pawlak, Z.: Rough real functions (1994), http://citeseer.ist.psu.edu/105864.html

  20. Peters, J.F., Han, L., Ramanna, S.: Rough neural computing in signal analysis. Computational Intelligence 17(3), 493–513 (2001)

    Article  MathSciNet  Google Scholar 

  21. Platt, J.C.: Support vector machines (2003), http://research.microsoft.com/users/jplatt/svm.html

  22. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin dag’s for multiclass classification. In: Advances in Neural Inform Processing Systems, pp. 547–553. MIT Press (2000)

    Google Scholar 

  23. da Rocha, A., Yager, R.: Neural nets and fuzzy logic. In: Kandel, A., Langholz, G. (eds.) Hybrid Architectures for Intelligent Systems, pp. 3–28. CRC Press, Ann Arbor (1992)

    Google Scholar 

  24. Smola, A., Scolkopf, B.: A tutorial on support vector regression. In: NeuroCOLT2 (1998)

    Google Scholar 

  25. Vapnik, V.: Estimation of Dependencies Based on Empirical Data. Nauka, Moscow (1979)

    Google Scholar 

  26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, NY (1995)

    MATH  Google Scholar 

  27. Vapnik, V.: Statistical Learning Theory. Wiley, NY (1998)

    MATH  Google Scholar 

  28. Vapnik, V.N., Golowich, S., Smola, A.: Support vector method for function approximation, regression estimation and signal processing. In: Advances in Neural Information Processing Systems, vol. 9, pp. 281–287 (1997)

    Google Scholar 

  29. Varma, C.S., Asharaf, S., Murty, M.N.: Rough Core Vector Clustering. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 304–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Yang, H.: Margin Variations in Support Vector Regression for the Stock Market Prediction. M. Phil. dissertation, Department of Computer Science and Engineering, The Chinese University of Hong Kong (2003), http://www.svms.org/finance/Yang2003.pdf

  31. Yang, H., Chan, L.-W., King, I.: Support Vector Machine Regression for Volatile Stock Market Prediction. In: Yin, H., Allinson, N., Freeman, R., Keane, J., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 391–396. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingras, P., Bhalchandra, P., Butz, C., Asharaf, S. (2013). Rough Support Vectors: Classification, Regression, Clustering. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30344-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30344-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30343-2

  • Online ISBN: 978-3-642-30344-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics