DNA Rough-Set Computing in the Development of Decision Rule Reducts

Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 42)

Abstract

Rough set methods are often employed for reducting decision rules. The specific techniques involving rough sets can be carried out in a computational manner. However, they are quite demanding when it comes computing overhead. In particular, it becomes problematic to compute all minimal length decision rules while dealing with a large number of decision rules. This results in an NP-hard problem. To address this computational challenge, in this study, we propose a method of DNA rough-set computing composed of computational DNA molecular techniques used for decision rule reducts. This method can be effectively employed to alleviate the computational complexity of the problem.

Keywords

DNA computation decision rule reduction NP hard problem digraph DNA rough-set computing encoding process deoxyribonucleic acid nitrogen- containing base hydrogen bond DNA molecular technique restriction enzyme technique ligation technique polymerase chain reaction technique affinity separation technique gel electrophoresis technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Computing with DNA: The manipulation of DNA to solve mathematical problems is redefining what is meant by computation. Scientific American 279(2), 34–41 (1998)CrossRefGoogle Scholar
  2. 2.
    Burlage, R.S., Atlas, R., Stahl, D., Geesey, G., Sayler, G.: Techniques in microbial ecology, pp. 299–311. Oxford University Press Inc. (1998)Google Scholar
  3. 3.
    Burton, Z.F., Kaguni, J.M.: Experiments in molecularbiology: Biochemical applications, pp. 11–20. Academic Press (1997)Google Scholar
  4. 4.
    Cooper, N.G., Berg, P.: The human genome project: Deciphering the blueprint of heredity, pp. 48–54. University Science Books (1994)Google Scholar
  5. 5.
    Fitch, J.P.: An engineering introduction to biotechnology, pp. 43–60. SPIE Press (2002)Google Scholar
  6. 6.
    Goedken, E.R., Levitus, M., Johnson, A., Bustamante, C., O’Donnell, M., Kuriyan, J.: Fluorescence measurements on the E. coli DNA polymerase clamp loader: Implications for conformational changes during ATP and clamp binding. Journal of Molecular Biology 336(5), 1047–1059 (2004)CrossRefGoogle Scholar
  7. 7.
    Greene, J.J., Rao, V.B.: Recombinant DNA principles and methodologies, pp. 126–134. Marcel Dekker Inc. (1996)Google Scholar
  8. 8.
    Grzymała-Busse, J.W.: A comparison of tree strategies to rule induction from data with numerical attributes. Electronic Notes in Theoretical Computer Science 82(4), 132–140 (2003)CrossRefGoogle Scholar
  9. 9.
    Hartl, D.L., Jones, E.W.: Essential genetics: A genomics perspective, 3rd edn., pp. 90–412. Jones and Bartlett Publishers Inc. (2002)Google Scholar
  10. 10.
    Hartl, D.L., Jones, E.W.: Genetics: Analysis of genes and genomes, 7th edn., pp. 431–445. Jones and Bartlett Publishers Inc. (2009)Google Scholar
  11. 11.
    Jorgensen, W.L., Madura, J.D.: Temperature and size dependence for Monte Carlo simulation of TIP4P water. Molecular Physics: An International Journal at the Interface between Chemistry and Physics 56(6), 1381–1392 (1985)Google Scholar
  12. 12.
    Kari, L., Paun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker systems, and universality. Acta Informatica 35(5), 401–420 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kleinberg, J., Tardos, E.: Algorithm design, pp. 29–207. Pearson Education Inc. (2006)Google Scholar
  14. 14.
    Matejtschuk, P.: Affinity separations: A practical approach, pp. 2–38. Oxford University Press Inc. (1997)Google Scholar
  15. 15.
    McPherson, M.J., Quirke, P., Taylor, G.R.: PCR 1: A practical approach, pp. 1–14. Oxford University Press Inc. (1991)Google Scholar
  16. 16.
    Micklos, D.A., Freyer, G.A., Crotty, D.A.: DNA science: A first course, 2nd edn., pp. 30–182. Cold Spring Harbor Laboratory Press (2003)Google Scholar
  17. 17.
    Nicholl, D.S.T.: An introduction to genetic engineering, 2nd edn. Studies in Biology, pp. 43–51. Cambridge University Press (2002)Google Scholar
  18. 18.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20(5), 469–483 (1984)MATHCrossRefGoogle Scholar
  20. 20.
    Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: Probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29(1), 81–95 (1988)MATHCrossRefGoogle Scholar
  21. 21.
    Pedrycz, W., Chen, S.-C., Rubin, S.H., Lee, G.: Risk evaluation through decision-support architectures in threat assessment and countering terrorism. Applied Soft Computing 11(1), 621–631 (2011)CrossRefGoogle Scholar
  22. 22.
    Pedrycz, W., Russo, B., Succi, G.: A model of job satisfaction for collaborative development processes. Journal of Systems and Software 84(5), 739–752 (2011)CrossRefGoogle Scholar
  23. 23.
    Peters, J.F., Skowron, A.: Zdzisław Pawlak life and work (1926-2006). Information Sciences 177, 1–2 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Polkowski, L.: Advances in soft computing: Rough sets, pp. 18–45. Physica-Verlag, Heidelberg (2002)Google Scholar
  25. 25.
    Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery 1. Methodology and Applications, pp. 201–250. Physica-Verlag, Heidelberg (1998)MATHGoogle Scholar
  26. 26.
    Rabinow, P.: Making PCR: A story of biotechnology, pp. 1–17. The University of Chicago Press, Chicago (1996)Google Scholar
  27. 27.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Application and Advances of the Rough Sets Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  28. 28.
    Shan, N., Ziarko, W.: Data-based acquisition and incremental modification of classification rules. Computational Intelligence 11(2), 357–370 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in rough-granular computing. Fundamenta Informaticae 100(1-4), 141–157 (2010)MathSciNetMATHGoogle Scholar
  30. 30.
    Skowron, A., Wasilewski, P.: Information Systems in Modeling Interactive Computations on Granules. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS(LNAI), vol. 6086, pp. 730–739. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Słowiński, R. (ed.): Intelligent Decision Support. Handbook of Application and Advances of The Rough Sets Theory, pp. 363–372. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  32. 32.
    Tyagi, R.: Understanding molecular biology, pp. 174–213. Discovery Publishing House Pvt. Ltd. (2009)Google Scholar
  33. 33.
    Watada, J., Wang, S., Pedrycz, W.: Building confidence-interval-based fuzzy random regression models. IEEE Transactions on Fuzzy System 17(6), 1273–1283 (2009)CrossRefGoogle Scholar
  34. 34.
    Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  35. 35.
    Watson, J.D., Myers, R.M., Caudy, A.A., Witkowski, J.A.: Recombinant DNA: Genes and genomes - a short course, 3rd edn., pp. 5–25. W.H. Freeman and Company (2007)Google Scholar
  36. 36.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Graduate School of Information, Production and SystemsWaseda UniversityKitakyushuJapan
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations