Classifiers Based on Data Sets and Domain Knowledge: A Rough Set Approach

  • Jan G. Bazan
  • Stanisława Bazan-Socha
  • Sylwia Buregwa-Czuma
  • Przemysław Wiktor Pardel
  • Andrzej Skowron
  • Barbara Sokołowska
Part of the Intelligent Systems Reference Library book series (ISRL, volume 43)


The problem considered is how to construct classifiers for approximation of complex concepts on the basis of experimental data sets and domain knowledge that are mainly represented by concept ontology. The approach presented in this chapter to solving this problem is based on the rough set theory methods. Rough set theory introduced by Zdzisław Pawlak during the early 1980s provides the foundation for the construction of classifiers. This approach is applied to approximate spatial complex concepts and spatio-temporal complex concepts defined for complex objects, to identify the behavioral patterns of complex objects, and to the automated behavior planning for such objects when the states of objects are represented by spatio-temporal concepts requiring approximation. The chapter includes results of experiments that have been performed on data from a vehicular traffic simulator and the recent results of experiments that have been performed on medical data sets obtained from Second Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland. Moreover, we also describe the results of experiments that have been performed on medical data obtained from Neonatal Intensive Care Unit in the Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland.


Rough set concept approximation complex dynamical system ontology of concepts behavioral pattern identification automated planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)MATHGoogle Scholar
  2. 2.
    Altman, D.G.: Practical Statistics for Medical Research. Chapman and Hall/CRC, London (1997)Google Scholar
  3. 3.
    Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, New York (1997)MATHGoogle Scholar
  4. 4.
    Bazan, J.G.: Hierarchical Classifiers for Complex Spatio-temporal Concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bazan, J.G.: Rough sets and granular computing in behavioral pattern identification and planning. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 777–799. John Wiley & Sons, The Atrium (2008)Google Scholar
  6. 6.
    Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Automatic planning based on rough set tools: Towards supporting treatment of infants with respiratory failure. In: Proceedings of the Workshop on Concurrency, Specification, and Programming (CS&P 2006), Wandlitz, Germany, September 27-29. Informatik-Bericht, vol. 170, pp. 388–399. Humboldt University, Berlin (2006)Google Scholar
  7. 7.
    Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Automatic Planning of Treatment of Infants with Respiratory Failure Through Rough Set Modeling. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 418–427. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In: Proceedings of the Eleventh Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), Paris, France, July 2-7, pp. 2650–2657 (2006)Google Scholar
  9. 9.
    Bazan, J.G., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.: Rough set approach to behavioral pattern identification. Fundamenta Informaticae 75(1-4), 27–47 (2007)MathSciNetGoogle Scholar
  10. 10.
    Bazan, J.G., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Kęplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Borrett, S.R., Bridewell, W., Langley, P., Arrigo, K.R.: A method for representing and developing process models. Ecological Complexity 4, 1–12 (2007)CrossRefGoogle Scholar
  12. 12.
    Breiman, L.: Statistical modeling: the two cultures. Statistical Science 16(3), 199–231 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Desai, A.: Adaptive complex enterprises. Communications ACM 5(48), 32–35 (2005)CrossRefGoogle Scholar
  14. 14.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Engineering: A Rough Set Approach. Springer, Heidelberg (2006)MATHGoogle Scholar
  15. 15.
    Domingos, P.: Toward knowledge-rich data mining. Data Mining and Knowledge Discovery 1(15), 21–28 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. I-V. Springer, Heidelberg (2001)MATHGoogle Scholar
  17. 17.
    Guarino, N.: Formal ontology and information systems. In: Proceedings of the First International Conference on Formal Ontology in Information Systems (FOIS 1998), Trento, Italy, June 6-8, pp. 3–15. IOS Press (1998)Google Scholar
  18. 18.
    Hillerbrand, R., Sandin, P., Peterson, M., Roeser, S. (eds.): Handbook of Risk Theory: Epistemology, Decision Theory, Ethics, and Social Implications of Risk. Springer, Berlin (2012)Google Scholar
  19. 19.
    Hoen, P.J., Tuyls, K., Panait, L., Luke, S., Poutré, J.A.L.: An Overview of Cooperative and Competitive Multiagent Learning. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 1–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Ignizio, J.P.: An Introduction to Expert Systems. McGraw-Hill, New York (1991)Google Scholar
  21. 21.
    Jarrar, M.: Towards Methodological Principles for Ontology Engineering. Ph.D. thesis, Vrije Universiteit Brussel (2005)Google Scholar
  22. 22.
    Keefe, R.: Theories of Vagueness. Cambridge University Press, New York (2000)Google Scholar
  23. 23.
    Kloesgen, E., Zytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  24. 24.
    Kriegel, H.P., Borgwardt, K.M., Kröger, P., Pryakhin, A., Schubert, M., Zimek, A.: Future trends in data mining. Data Mining and Knowledge Discovery 1(15), 87–97 (2007)CrossRefGoogle Scholar
  25. 25.
    Langley, P.: Cognitive architectures and general intelligent systems. AI Magazine 27, 33–44 (2006)Google Scholar
  26. 26.
    Liu, J., Jin, X., Tsui, K.: Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling. Kluwer/Springer, Heidelberg (2005)MATHGoogle Scholar
  27. 27.
    Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent technology: Computing as interaction. a roadmap for agent-based computing. Agentlink iii, the european coordination action for agent-based computing. University of Southampton, UK (2005)Google Scholar
  28. 28.
    Michalski, R., et al. (eds.): Machine Learning, vol. I-IV. Morgan Kaufmann, Los Altos (1983, 1986, 1990, 1994)Google Scholar
  29. 29.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statistical classification. Ellis Horwood Limited, England (1994)MATHGoogle Scholar
  30. 30.
    Mitchel, T.M.: Machine Learning. McGraw-Hill, Boston (1997)Google Scholar
  31. 31.
    Pancerz, K., Suraj, Z.: Rough sets for discovering concurrent system models from data tables. In: Hassanien, A.E., Suraj, Z., Ślęzak, D., Lingras, P. (eds.) Rough Computing: Theories, Technologies and Applications. Idea Group, Inc. (2007)Google Scholar
  32. 32.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: D: System Theory, Knowledge Engineering and Problem Solving, vol. 9, Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  33. 33.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Peters, J.F.: Rough Ethology: Towards a Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 153–174. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Peters, J.F., Skowron, A.: Zdzisław Pawlak life and work (1926–2006). Information Sciences 177, 1–2 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bazan, J.G., Szczuka, M.S.: The Rough Set Exploration System. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Peters, J.F., Skowron, A., Rybiński, H. (eds.): Transactions on Rough Sets IX. LNCS, vol. 5390. Springer, Heidelberg (2008)MATHGoogle Scholar
  38. 38.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the American Mathematical Society (AMS) 5(50), 537–544 (2003)MathSciNetGoogle Scholar
  39. 39.
    Polkowski, L., Skowron, A.: Rough Mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 85–94. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  40. 40.
    Read, S.: Thinking about Logic: An Introduction to the Philosophy of Logic. Oxford University Press, New York (1994)Google Scholar
  41. 41.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  42. 42.
    Rough ICE: Project web site,
  43. 43.
    RSES: Project web site,
  44. 44.
    Simulator: Project web site,
  45. 45.
    Skowron, A., Stepaniuk, J., Swiniarski, R.W.: Modeling rough granular computing based on approximation spaces. Information Sciences 184(1), 20–43 (2012)CrossRefGoogle Scholar
  46. 46.
    Stone, P., Sridharan, M., Stronger, D., Kuhlmann, G., Kohl, N., Fidelman, P., Jong, N.K.: From pixels to multi-robot decision-making: A study in uncertainty. Robotics and Autonomous Systems 54(11), 933–943 (2006)CrossRefGoogle Scholar
  47. 47.
    Suraj, Z.: Discovering concurrent data models and decision algorithms from data: A rough set approach. International Journal on Artificial Intelligence and Machine Learning, IRSI, 51–56 (2004)Google Scholar
  48. 48.
    The Infobright Community Edition (ICE) Homepage at,
  49. 49.
    Unnikrishnan, K.P., Ramakrishnan, N., Sastry, P.S., Uthurusamy, R.: Service-oriented science: Scaling escience impact. In: Proceedings of the Fourth KDD Workshop on Temporal Data Mining: Network Reconstruction from Dynamic Data, The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data (KDD 2006), Philadelphia, USA, August 20-23 (2006)Google Scholar
  50. 50.
    Urmson, C., et al.: High speed navigation of unrehearsed terrain: Red team technology for grand challenge. Report CMU-RI-TR-04-37, The Robotics Institute, Carnegie Mellon University (2004)Google Scholar
  51. 51.
    Vapnik, V. (ed.): Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar
  52. 52.
    Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems – I: Fundamental Theory and Applications 1(45), 105–119 (1999)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) - an outline. Information Sciences 171, 1–40 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan G. Bazan
    • 1
    • 2
  • Stanisława Bazan-Socha
    • 3
  • Sylwia Buregwa-Czuma
    • 1
  • Przemysław Wiktor Pardel
    • 1
    • 2
  • Andrzej Skowron
    • 2
  • Barbara Sokołowska
    • 3
  1. 1.Institute of Computer ScienceUniversity of RzeszówRzeszówPoland
  2. 2.Institute of MathematicsUniversity of WarsawWarsawPoland
  3. 3.Second Department of Internal MedicineJagiellonian University Medical CollegeCracowPoland

Personalised recommendations