Rough Set-Based Identification of Heart Valve Diseases Using Heart Sounds

  • Mostafa A. Salama
  • Omar S. Soliman
  • Ilias Maglogiannis
  • Aboul Ella Hassanien
  • Aly A. Fahmy
Part of the Intelligent Systems Reference Library book series (ISRL, volume 43)

Abstract

Taking into account that heart auscultation remains the dominant method for heart examination in the small health centers of the rural areas and generally in primary healthcare set-ups, the enhancement of this technique would aid significantly in the diagnosis of heart diseases. In this context, this chapter introduces the ability of rough set methodology to successfully classify heart sound diseases without the need applying feature selection. Heart sound data sets represents real life data that contains continuous attributes and a large number of features that could be hardly classified by most of classification techniques. Discretizing the raw heart sound data and applying a feature reduction approach should be applied prior any classifier to increase the classification accuracy results. The capabilities of rough set in discrimination, feature reduction classification have proved their superior in classification of objects with very excellent accuracy results. The experimental results obtained, show that the overall classification accuracy offered by the employed rough set approach is high compared with other machine learning techniques including Support Vector Machine (SVM), Hidden Naive Bayesian network (HNB), Bayesian network (BN), Naive Bayesian tree (NBT) [9], Decision tree (DT), Sequential minimal optimization (SMO).

Keywords

Heart sound disease rough set dimensional reduction classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Qaheri, H., Hassanien, A.E., Abraham, A.: A Generic Scheme for Generating Prediction Rules Using Rough Sets. In: Abraham, A., Falcón, R., Bello, R. (eds.) Rough Set Theory. SCI, vol. 174, pp. 163–186. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Chao, S., Li, Y.: Multivariate interdependent discretization for continuous attribute. In: Proceeding of the 3rd International Conference on Information Technology and Applications, vol. 1, pp. 167–172. IEEE Computer Society Press (2005)Google Scholar
  3. 3.
    Chen, T., Kuan, K., Celi, L., Clifford, G.: Intelligent heartsound diagnostics on a cell phone using a hands-free kit. In: Proceeding of AAAI Artificial Intelligence for Development, AI-D 2010, pp. 26–31. Association for the Advancement of Artificial Intelligence (2010)Google Scholar
  4. 4.
    Ericson, B.: Heart sounds and murmurs: A practical guide. Mosby-Year Book Inc. (1997)Google Scholar
  5. 5.
    Haghighi-Mood, A., Torry, J.N.: A sub-band energy tracking algorithm for heart sound segmentation. In: Computers in Cardiology, pp. 501–504. Computer Society Press (1995)Google Scholar
  6. 6.
    Hebden, J.E., Torry, J.N.: Neural network and conventional classifiers to distinguish between first and second heart sounds. Artificial Intelligence Methods for Biomedical Data Processing IEE Colloquium (Digest) 3, 1–6 (1996)Google Scholar
  7. 7.
    Higuchi, K., Sato, K., Makuuchi, H., Furuse, A., Takamoto, S., Takeda, H.: Automated diagnosis of heart disease in patients with heart murmurs: application of a neural network technique. Journal of Medical Engineering and Technology 30, 61–68 (2006)Google Scholar
  8. 8.
    Janecek, A.G.K., Gansterer, W.N., Demel, M., Ecker, G.F.: On the relationship between feature selection and classification accuracy. Journal of Machine Learning Research - Proceedings Track 4, 90–105 (2008)Google Scholar
  9. 9.
    Kohavi, R.: Scaling up the accuracy of Naive-bayes classifiers: a decision-tree hybrid. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 202–207. AAAI Press (1996)Google Scholar
  10. 10.
    Kumar, D., Carvalho, P., Antunes, M., Paiva, R.P., Henriques, J.: Heart murmur classification with feature selection. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 4566–4569. Computer Society Press (2010)Google Scholar
  11. 11.
    Liang, H., Lukkarinen, S., Hartimo, I.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1630–1633. Computer Society Press (1997)Google Scholar
  12. 12.
    Liang, H., Lukkarinen, S., Hartimo, I.: Heart sound segmentation algorithm based on heart sound envelogram. In: Computers in Cardiology, pp. 105–108. IEEE Computer Society Press (1997)Google Scholar
  13. 13.
    Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes. In: Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, Virginia, USA, November 8, pp. 388–391. IEEE Computer Society Press (1995)Google Scholar
  14. 14.
    Liu, H., Setiono, R.: Feature selection via discretization. IEEE Transactions on Knowledge and Data Engineering 9, 642–645 (1997)CrossRefGoogle Scholar
  15. 15.
    Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed 95(1), 47–61 (2009)CrossRefGoogle Scholar
  16. 16.
    Nguyen, H.S., Nguyen, S.H.: Discretization methods in data mining. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 451–482. Physica-Verlag, Heidelberg (1998)Google Scholar
  17. 17.
    Nguyen, H.S., Skowron, A.: Quantization of real value attributes. In: Proceedings of the 2nd Joint Conference of Information Sciences (JCIS 1995), Durham, NC, pp. 34–37 (1995)Google Scholar
  18. 18.
    Pavlopoulos, S., Stasis, A., Loukis, E.: A decision tree-based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. BioMedical Engineering OnLine 3(21), 1–15 (2004)Google Scholar
  19. 19.
    Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 48–57 (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support vector machines. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press (1999)Google Scholar
  21. 21.
    Rough Set Exploration System (RSES), Group of Logic, Institute of Mathematics, Warsaw University, Poland, http://logic.mimuw.edu.pl/~rses/
  22. 22.
    Salama, M.A., Hassanien, A.E., Fahmy, A.A.: Uni-class pattern-based classification model. In: Proceeding of the 10th IEEE International Conference on Intelligent Systems Design and Applications, Cairo, Egypt, pp. 1293–1297. IEEE Computer Society Press (December 2010)Google Scholar
  23. 23.
    Soliman, O.S., Hassanien, A.E., El-Bendary, N.: A rough clustering algorithm based on entropy information. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 213–222. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Swiniarski, R., Skowron, A.: Rough set methods in feature selection and extraction. Pattern Recognition Letters 24(6), 833–849 (2003)MATHCrossRefGoogle Scholar
  25. 25.
    Vyas, O.P., Das, K.: A suitability study of discretization methods for associative classifiers. International Journal of Computer Applications 5(10), 46–51 (2010)CrossRefGoogle Scholar
  26. 26.
    Zhang, M., Yao, J.T.: A rough sets based approach to feature selection. In: Proceedings of The 23rd International Conference of NAFIPS, Banff, Canada, June 27-30, pp. 434–439 (2004)Google Scholar
  27. 27.
    Zhong, N., Dong, J.Z., Ohsuga, S.: Data mining: A probabilistic rough set approach. In: Rough Sets in Knowledge Discovery, vol. 2, pp. 127–146. Physica-Verlag, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mostafa A. Salama
    • 1
  • Omar S. Soliman
    • 2
  • Ilias Maglogiannis
    • 3
  • Aboul Ella Hassanien
    • 2
  • Aly A. Fahmy
    • 2
  1. 1.Department of Computer ScienceBritish University in EgyptCairoEgypt
  2. 2.Faculty of Computers and InformationCairo UniversityCairoEgypt
  3. 3.Department of Computer Science and Biomedical InformaticsUniversity of Central GreeceLamiaGreece

Personalised recommendations