Uncertainty Problem Processing with Covering Generalized Rough Sets

  • Jun Hu
  • Guoyin Wang
Part of the Intelligent Systems Reference Library book series (ISRL, volume 43)


Rough set theory is useful in processing uncertainty problems. Because the limitation of classical rough set theory, many extensions have been developed. Covering generalized rough set model is an important one of them. Although many theoretical results have been achieved in the past years. However, the application of covering generalized rough set theory is discussed rarely. In this chapter, two typical uncertainty problems, incomplete information processing, and fuzzy decision making, are discussed from the view of covering generalized rough set theory.


Uncertainty problem processing covering generalized rough set incomplete information system knowledge reduction fuzzy decision making fuzzy rough set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonikowski, Z., Bryniarski, E., Wybraniec, U.: Extensions and intentions in the rough set theory. Information Science 107, 149–167 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–208 (1990)MATHCrossRefGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–222. Kluwer Academic Publishers, Boston (1992)Google Scholar
  4. 4.
    Feng, T., Mi, J.S., Wu, W.Z.: Covering-based generalized rough fuzzy sets. In: The First International Conference Rough Sets and Knowledge Technology, Chongqing, China, pp. 208–215 (2006)Google Scholar
  5. 5.
    Grzymala-Busse, J.W.: Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 58–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hu, J., Wang, G.Y., Zhang, Q.H.: Uncertainty measure of covering generated rough set. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2006 Workshops) (WI-IATW 2006), pp. 498–504. IEEE Computer Society Press (2006)Google Scholar
  7. 7.
    Hu, J., Wang, G.Y.: Knowledge Reduction of Covering Approximation Space. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Chan, K.C.C. (eds.) Transactions on Computational Science V. LNCS, vol. 5540, pp. 69–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hu, J.: Covering based Granular Computing and Its Application. PhD thesis, Xidian University, Xi’an, Shanxi, China (2010)Google Scholar
  9. 9.
    Hu, Q.H., Xie, Z.X., Yu, D.R.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40, 3509–3521 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Hu, Q.H., Yu, D.R., Xie, Z.X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 27, 414–423 (2006)CrossRefGoogle Scholar
  11. 11.
    Huang, B., He, X., Zhou, X.Z.: Rough entropy based on generalized rough sets covering reduction. Journal of Software 15(2), 215–220 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Huang, H., Wang, G.Y., Wu, Y.: An approach for Incomplete Information Systems. In: Dasarathy, B.V. (ed.) Data Mining and Knowledge Discovery: Theory, Tools, and Technology VI. Proceedings of SPIE, vol. 5433, pp. 114–121 (2004)Google Scholar
  13. 13.
    Jensen, R., Shen, Q.: Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems 141(3), 469–485 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)CrossRefGoogle Scholar
  15. 15.
    Kryszkiewicz, M.: Rough Set Approach to incomplete information system. Information Sciences 112, 39–49 (1998)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kuncheva, L.I.: Fuzzy rough sets: Application to feature selection. Fuzzy Sets and Systems 51, 147–153 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, D.Y., Liu, C.Y., Du, Y., Han, X.: Artificial Intelligence with Uncertainty. Journal of Software 15(11), 1583–1593 (2004)MATHGoogle Scholar
  19. 19.
    Li, T.J.: Rough approximation operators in covering approximation spaces. In: International Conference on Rough Sets and Current Trends in Computing, pp. 174–182 (2006)Google Scholar
  20. 20.
    Li, T.R., Ruan, D., Geert, W., Song, J., Xu, Y.: A Rough set based characteristic relation approach for dynamic attribute generalization in data mining. Knowledge-Based Systems 20(5), 485–494 (2007)CrossRefGoogle Scholar
  21. 21.
    Mi, J.S., Leung, Y., Zhao, H.Y., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm. Information Sciences 178(16), 3203–3213 (2008)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Mordeson, J.N.: Rough set theory applied to (fuzzy) ideal theory. Fuzzy Sets and Systems 121, 315–324 (2001)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems 100(1-3), 327–342 (1998)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Pawlak, Z.: Rough sets. Computer and Information Science 11, 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pawlak, Z.: Rough Sets: Theoretical Aspects Of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)MATHGoogle Scholar
  26. 26.
    Słowiński, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Tansactions on Knowledge and Data Engineering 12(2), 331–326 (2000)Google Scholar
  27. 27.
    Stefanowski, J., Tsoukias, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) The 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular Soft Computing, pp. 73–81 (1999)Google Scholar
  28. 28.
    Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 545–566 (2001)CrossRefGoogle Scholar
  29. 29.
    Tsang, E.C.C., Chen, D., Lee, J.W.T., Yeung, D.S.: On the upper approximations of covering generalized rough sets. In: Proceedings of The Third International Conference on Machine Learning and Cybernetics, Shanghai, pp. 4200–4203 (2004)Google Scholar
  30. 30.
    Wang, G.Y.: Extension of rough set under incomplete information systems. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1098–1103. IEEE Computer Society Press (2002)Google Scholar
  31. 31.
    Wei, L., Miao, D.Q., Xu, F.F., Xia, F.C.: Research on a covering rough fuzzy set model. Journal of Computer Research and Development 43(10), 1719–1723 (2006)CrossRefGoogle Scholar
  32. 32.
    Wu, W.Z., Mi, J.S., Zhang, W.X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Xu, Z.Y., Liao, J.Q.: On the covering fuzzy rough sets model. Fuzzy Systems and Mathematics 20(3), 141–144 (2006)MathSciNetGoogle Scholar
  34. 34.
    Xu, W.H., Zhang, X.Y.: Fuzziness in covering generalized rough sets. In: The 26th Chinese Control Conference, Zhangjiajie, Hunan, China, pp. 386–390 (2007)Google Scholar
  35. 35.
    Yeung, D.S., Chen, D.G., Tsang, E.C.C., John, W.T.L.: On the generalization of fuzzy rough sets. IEEE Transactions on Fuzzy Systems 13(3), 343–361 (2005)CrossRefGoogle Scholar
  36. 36.
    Żakowski, W.: Approximation in the Space (U, Π). Demonstratio Mathematica 16, 761–769 (1983)MathSciNetMATHGoogle Scholar
  37. 37.
    Zhu, F.: On Covering Generalized Rough Sets, MS thesis, The University of Arizona, Tucson, Arizona, USA (2002)Google Scholar
  38. 38.
    Zhu, W., Wang, F.Y.: Reduction and axiomization of coving generalized rough sets. Information Science 152, 217–230 (2003)MATHCrossRefGoogle Scholar
  39. 39.
    Zhu, W., Wang, F.Y.: Covering based granular computing for conflict analysis. In: Proc. IEEE Intelligence and Security Informatics Conf. (ISI 2006), pp. 566–571. IEEE Computer Society Press (2006)Google Scholar
  40. 40.
    Zhu, W., Wang, F.Y.: A new type of covering rough sets. In: IEEE IS 2006, September 4-6, pp. 444–449. IEEE Computer Society Press (2006)Google Scholar
  41. 41.
    Zhu, W.: A class of covering-based fuzzy rough sets. In: The Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, pp. 7–11 (2007)Google Scholar
  42. 42.
    Zhu, W.: Topological approaches to covering rough sets. Information Sciences 177, 1499–1508 (2007)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Transactions on Knowledge and Data Engineering 19(8), 1131–1144 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingP. R. China

Personalised recommendations