Abstract
This chapter is devoted to the design of new tools for the study of decision trees. These tools are based on dynamic programming approach and need the consideration of subtables of the initial decision table. So this approach is applicable only to relatively small decision tables. The considered tools allow us to compute:
-
1
The minimum cost of an approximate decision tree for a given uncertainty value and a cost function.
-
2
The minimum number of nodes in an exact decision tree whose depth is at most a given value.
For the first tool we considered various cost functions such as: depth and average depth of a decision tree and number of nodes (and number of terminal and nonterminal nodes) of a decision tree. The uncertainty of a decision table is equal to the number of unordered pairs of rows with different decisions. The uncertainty of approximate decision tree is equal to the maximum uncertainty of a subtable corresponding to a terminal node of the tree. In addition to the algorithms for such tools we also present experimental results applied to various datasets acquired from UCI ML Repository [4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alkhalid, A., Chikalov, I., Moshkov, M.: On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 438–445. Springer, Heidelberg (2010)
Chikalov, I., Hussain, S., Moshkov, M.: Relationships between Depth and Number of Misclassifications for Decision Trees. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 286–292. Springer, Heidelberg (2011)
Chikalov, I., Moshkov, M., Zelentsova, M.: On Optimization of Decision Trees. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 18–36. Springer, Heidelberg (2005)
Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml (cited September 19, 2011)
Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chikalov, I., Hussain, S., Moshkov, M. (2013). Relationships for Cost and Uncertainty of Decision Trees. In: Skowron, A., Suraj, Z. (eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30341-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-30341-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30340-1
Online ISBN: 978-3-642-30341-8
eBook Packages: EngineeringEngineering (R0)