Skip to main content

Physiological and Pathophysiological Functions of Hydrogen Sulfide

  • Chapter
  • First Online:
Gasotransmitters: Physiology and Pathophysiology

Abstract

Since being identified in mammalian brain, hydrogen sulfide (H2S), a well-known toxic gas with a smell of rotten eggs, was predicted to have physiological functions. Three H2S-producing enzymes have since been identified and their physiological regulation has been intensively studied. The effects of H2S on neuromodulation, smooth muscle relaxation, inflammation, and angiogenesis indicate that it functions as a signaling molecule. It also protects the nervous system and the cardiovascular system from oxidative insults, suggesting a cytoprotective role for the molecule. In contrast to these physiological functions, pathophysiological roles for H2S have also been demonstrated. Patients with ethylmalonic encephalopathy have mutations in mitochondrial dioxygenase, causing high levels of H2S to be produced, with consequent damage to the brain and skeletal muscle. Levels of cystathionine β-synthase (CBS), an H2S-producing enzyme, are 3 times higher in patients with Down’s syndrome compared to normal individuals. In this article, in addition to the basic properties of H2S, physiological and pathophysiological aspects of this important molecule are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag2S:

Silver sulfide

cAMP:

Cyclic adenosine monophosphate

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CFTR:

Cystic fibrosis transmembrane conductance regulator

CO:

Carbon monoxide

CSE:

Cystathionine γ-lyase

DHLA:

Dihydrolipoic acid

DS:

Down’s syndrome

DTT:

Dithiothreitol

EDHF:

Endothelium-derived hyperpolarizing factor

EDRF:

Endothelium-derived relaxing factor

EGF:

Epidermal growth factor

ER:

Endoplasmic reticulum

Gd3+ :

Gadolinium

GMP:

Guanosine monophosphate

GqPCR:

Gq-protein-coupled receptor

HCl:

Hydrochloric acid

H2O:

Water

HO-2:

Hemeoxygenase-2

HOCl:

Hypochlorous acid

H2S:

Hydrogen sulfide

H2S2O3 :

Thiosulfate

K+ :

Potassium

KATP :

ATP-dependent K+ channel

La3+ :

Lanthanoid

L-DOPA:

Levodopa

MDRF:

Muscle-derived relaxing factor

3MP:

3-Mercaptopyruvate

3MST:

3-Mercaptopyruvate sulfurtransferase

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF:

Nuclear factor

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

NOS:

Nitrix oxide synthase

NSAID:

Non-steroidal anti-inflammatory drugs

ONOO :

Peroxynitrite

O2 :

Oxygen

O2 :

Superoxide

PTP:

Protein tyrosine phosphatase

PERK:

Protein kinase-like ER kinase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SQR:

Sulfide-quinone oxidoreductase

TGF:

Transforming growth factor

TNF-α:

Tumor necrosis factor-α

TRP:

Transient receptor potential

TUNEL:

Terminal dUTP nick-end labeling

UPR:

Unfolded protein response

V–H+ :

ATPase

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    PubMed  CAS  Google Scholar 

  • Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254

    PubMed  CAS  Google Scholar 

  • Aizenman E, Lipton DA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    PubMed  CAS  Google Scholar 

  • Barbaux S, Plomin R, Whitehead AS (2000) Polymorphisms of genes controlling homocysteine/folate metabolism and cognitive function. NeuroReport 11:1133–1136

    PubMed  CAS  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNF alpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    PubMed  CAS  Google Scholar 

  • Braunstein AE, Goryachenkowa EV, Tolosa EA, Willhardt IH, Yefremova LL (1971) Specificity and some other properties of liver serine sulphhydrase:evidence for its identity with cystathionine β-synthase. Biochim Biophys Acta 242:247–260

    PubMed  CAS  Google Scholar 

  • Caliendo G, Cirino G, Santagada V, Wallace JL (2010) Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S -releasing drugs as pharmaceuticls. J Med Chem 53:6275–6286

    PubMed  CAS  Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374

    PubMed  CAS  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nature Rev Mol Cell Biol 11:50–61

    CAS  Google Scholar 

  • Cavallini D, Mondovi B, De Marco C, Scioscia-Santoro A (1962) The mechanism of desulphhydration of cysteine. Enzymologia 24:253–266

    PubMed  CAS  Google Scholar 

  • Chen G, Suzuki H, Weston AH (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 95:1165–1174

    PubMed  CAS  Google Scholar 

  • Chen GF, Cheung DW (1992) Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells. Circ Res 70:257–263

    PubMed  CAS  Google Scholar 

  • Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocystein. J Biol Chem 279:52082–52086

    PubMed  CAS  Google Scholar 

  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ–lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612

    PubMed  CAS  Google Scholar 

  • Cooper AJL (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222

    PubMed  CAS  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hipp9ocampal astrocyte networks. Neuron 8:429–440

    PubMed  CAS  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313

    PubMed  CAS  Google Scholar 

  • Dombkowski RA, Russell MJ, Olson KR (2004) Hydrogeu sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286:R678–R685

    PubMed  CAS  Google Scholar 

  • Eckman DM, Frankovich JD, Keef KD (1992) Comparison of the actions of acetylcholine and BRL 38227 in the guinea-pig coronary artery. Br J Pharmacol 106:9–16

    PubMed  CAS  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    PubMed  CAS  Google Scholar 

  • Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cysstathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19:1854–1856

    PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1992) A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267:19769–19772

    PubMed  CAS  Google Scholar 

  • Finkelstein JD (1990) Methionine metabokism in mammals. J Nutr Biochem 1:228–237

    PubMed  CAS  Google Scholar 

  • Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479–R1498

    PubMed  CAS  Google Scholar 

  • Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113:14–26

    PubMed  CAS  Google Scholar 

  • Garland CJ, Plane F, Kemp BK, Cocks TM (1995) Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol Sci 16:23–30

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    PubMed  CAS  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    PubMed  CAS  Google Scholar 

  • Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein RJ, Dowling G (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    PubMed  CAS  Google Scholar 

  • Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    PubMed  CAS  Google Scholar 

  • Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147

    PubMed  CAS  Google Scholar 

  • Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    PubMed  CAS  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. GEBS J 275:3352–3361

    CAS  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    PubMed  CAS  Google Scholar 

  • Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Naai Y, Kimura H (2005) Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem Biophys Res Commun 338:1547–1550

    PubMed  CAS  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    PubMed  CAS  Google Scholar 

  • Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine γ–lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368

    PubMed  CAS  Google Scholar 

  • Ishii I, Akahoshi N, Yu X-N, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine γ–lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123

    PubMed  CAS  Google Scholar 

  • Jeroschewski P, Steuckart CKM (1996) An amperometric microsensor for the determination of H2S in aquatic environments. Anal Chem 68:4351–4357

    CAS  Google Scholar 

  • Johansen D, Ytrehus K, Baxter GF (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—Evidence for a role of KATP channels. Basic Res Cardiol 101:53–60

    PubMed  CAS  Google Scholar 

  • Jouhou H, Yamamoto K, Homma A, Hara M, Kaneko A, Yamada M (2007) Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J Physiol 585:401–412

    PubMed  CAS  Google Scholar 

  • Junier MP, Coulpier M, Le Forestier N, Cadusseau J, Suzuki F, Peschanski M, Dreyfus PA (1994) Transforming growth factor alpha expression in degenerating motoneurons of the murine mutant wobbler: a neuronal signal for astrogliosis? J Neurosci 14:4206–4216

    PubMed  CAS  Google Scholar 

  • Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Red Signal 15:363–372

    CAS  Google Scholar 

  • Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in Down syndrome. Am J Med Genet 116A:310–311

    PubMed  Google Scholar 

  • Kaneko Y, Kimura Y, Kimura H, Niki I (2006) l-cysteine inhibits insulin release from the pancreatic beta-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55:1391–1397

    PubMed  CAS  Google Scholar 

  • Kato A, Ogura M, Suda M (1966) Control mechanism in the rat liver enzyme system converting L-methionine to L-cystine. 3. Noncompetitive inhibition of cystathionine synthetase-serine dehydratase by elemental sulfur and competitive inhibition of cystathionine-homoserine dehydratase by L-cysteine and L-cystine. J Biochem 59:40–48

    PubMed  CAS  Google Scholar 

  • Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Red Signal 12:1111–1123

    CAS  Google Scholar 

  • Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8:661–670

    PubMed  CAS  Google Scholar 

  • Kimura Y, Goto Y-I, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    PubMed  CAS  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    PubMed  CAS  Google Scholar 

  • Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37:311–320

    PubMed  CAS  Google Scholar 

  • Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, Darley-Usmar VM, Lancaster JR Jr, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol 292:H1953–H1960

    PubMed  CAS  Google Scholar 

  • Kraus DW, Doeller JE (2004) Sulfide consumption by mussel gill mitochondria is not strictly tied to oxygen reduction: measurements using a novel polarographic sulfide sensor. J Exp Biol 207:3667–3679

    PubMed  CAS  Google Scholar 

  • Krishnan N, Fu C, Pappin DJ, Tonks NK (2011) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Sig 4:ra86

    CAS  Google Scholar 

  • Krizaj D, Copenhagen DR (2002) Calcium regulation in photoreceptors. Front Biosci 7:d2023–d2044

    PubMed  CAS  Google Scholar 

  • Kwak WJ, Kwon GS, Jin I, Kuriyama H, Sohn HY (2003) Involvement of oxidative stress in the regulation of H2S production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol Lett 219:99–104

    PubMed  CAS  Google Scholar 

  • Lee M, Tazzari V, Glustarini D, Rossi R, Sparatore A, Soldato PD, McGeer E, McGeer PL (2010) Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation. J Biol Chem 285:17318–17328

    PubMed  CAS  Google Scholar 

  • Lefer DJ (2008) Potential importance of alterations in hydrogen sulphide (H2S) bioavailability in diabetes. Br J Pharmacol 155:617–619

    PubMed  CAS  Google Scholar 

  • Levitt MD, Abdel-Rehim MS, Furne J (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15:373–378

    PubMed  CAS  Google Scholar 

  • Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129

    PubMed  CAS  Google Scholar 

  • Lippert AR, New EJ, Chang CJ (2011) Re-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 133:10078–10080

    PubMed  CAS  Google Scholar 

  • Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, Whorton AR, Xian M (2011) Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew Chem Int Ed 50:10327–10329

    CAS  Google Scholar 

  • Lu M, Liu YH, Goh HS, Wang JJX, Yong QC, Wang R, Bian JS (2010) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21:993–1002

    PubMed  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Red Signal 9:2277–2293

    CAS  Google Scholar 

  • Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638

    PubMed  CAS  Google Scholar 

  • Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of omercaptopyruvate to pyruvate. J Biol Chem 206:561–575

    PubMed  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485

    PubMed  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386

    PubMed  CAS  Google Scholar 

  • Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, Takahashi T, Ishii I, Matsubara K, Kabe Y, Uchiyama S, Nagata E, Gadalla MM, Snyder SH, Suematsu M (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109(4):1293–1298

    PubMed  CAS  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Sign 2:ra72

    Google Scholar 

  • Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cello Biol 110:243–250

    CAS  Google Scholar 

  • Nagahara N, Okazaki T, Nishino T (1995) Cytosolic mercaptypyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem 270:16230–16235

    PubMed  CAS  Google Scholar 

  • Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559

    PubMed  CAS  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88:11285–11289

    PubMed  Google Scholar 

  • Ogasawara y, Isoda S, Tanabe S (1994) Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 17:1535–1542

    PubMed  CAS  Google Scholar 

  • Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hyp9oxic vasodilation. J Exp Biol 209:4011–4023

    PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL, Bearden SE, Leger JS, Nilson E, Gao Y, Maddeen JA (2010) Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regal Integr Comp Physiol 298:R51–R60

    CAS  Google Scholar 

  • Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    PubMed  CAS  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic retworks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Peng H, Cheng Y, Dai C, King AL, Predmore BL, Lefer DJ, Wang B (2011) A fluorescent probe for fast and quantitaqtive detection of hydrogen sulfide in blood. Angew Chem Int Ed 50:9672–9675

    CAS  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10710–10724

    Google Scholar 

  • Predmore BL, Lefer DJ (2010) Development of hydrogen sulfide-based therapeutics for cardiovascular disease. J Cardiovasc Transl Res 3:487–498

    PubMed  Google Scholar 

  • Qian Y, Karpus J, KIabil O, Zhang S-Y, Zhu H-L, Banerjee R, Zhao J, He C (2011) Selective fluorescent probes for live-cell monitoring of sulphide. Nat Commun 2–495, doi:10.1038

  • Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T (2011) Development of a highly selective fluorescence probe for hydrogen sulfide. J Am Chem Soc 133:18003–18005

    PubMed  CAS  Google Scholar 

  • Savage JC, Gould DH (1990) Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 526:540–545

    PubMed  CAS  Google Scholar 

  • Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24

    PubMed  CAS  Google Scholar 

  • Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: A universal defense against antibiotics in bacteria. Science 334:986–990

    PubMed  CAS  Google Scholar 

  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a) Vascular endothelium exresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626

    PubMed  CAS  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009b) 3-Mercaptopyruvate sulfurtransferease produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    PubMed  CAS  Google Scholar 

  • Shikano K, Long CJ, Ohlstein EH, Berkowitz BA (1988) Comparative pharmacology of endothelium-derived relaxing factor and nitric oxide. J Pharmacol Exp Ther 247:873–881

    PubMed  CAS  Google Scholar 

  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466

    PubMed  CAS  Google Scholar 

  • Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    PubMed  CAS  Google Scholar 

  • Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AKI, Liu RM, Hagen TM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386

    PubMed  CAS  Google Scholar 

  • Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydroen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641

    PubMed  CAS  Google Scholar 

  • Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gero D, Szoleczky P, Chang T, Zhou ZWuL, Wang R, Papapetropoulos A, Szabo C (2011) Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci USA 108:13829–13834

    PubMed  CAS  Google Scholar 

  • Taniguchi T, Kimura T (1974) Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin. Biochim Biophys Acta 364:284–295

    PubMed  CAS  Google Scholar 

  • Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251

    PubMed  CAS  Google Scholar 

  • Tateishi N, Higashi T, Naruse A, Nakashima K, Shiozaki H (1977) Rat liver glutathione: possible role as a reservoir of cysteine. J Nutr 107:51–60

    PubMed  CAS  Google Scholar 

  • Taub JW, Huang X, Matherly LH, Stout ML, Buck SA, Massey GV, Becton DL, Chang MN, Weinstein HJ, Ravindranath Y (1999) Expression of chromosome 21-localized genes in acute myeloid leukemia: differences between Down syndrome and non-Down syndrome blast cells and relationship to invitro sensitivity to cytosine arabinoside and daunorubicin. Blood 94:1393–1400

    PubMed  CAS  Google Scholar 

  • Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145

    PubMed  CAS  Google Scholar 

  • Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205

    PubMed  CAS  Google Scholar 

  • Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 413:1–7

    PubMed  CAS  Google Scholar 

  • Tsugane M, Nagai Y, Kimura Y, Oka J-I, Kimura H (2007) Differentiated astrocytes acquire sensitivity to hydrogen sulfide that is diminished by the transformation into reactive astrocytes. Antioxid Redox Signal 9:257–269

    PubMed  CAS  Google Scholar 

  • Ubuka T, Umemura S, Yuasa S, Kinuta M, Watanabe K (1978) Purification and characterization of mitochondrial cysteine aminotransferase from rat liver. Physiol Chem Phys 10:483–500

    PubMed  CAS  Google Scholar 

  • Umemura K, Kimura H (2007) Hydrogen sulfide enhances reducing activity in neurons: neurotropic role of H2S in the brain? Antioxid Redox Signal 9:2035–2041

    PubMed  CAS  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384

    PubMed  CAS  Google Scholar 

  • Viscomi C, Burlina AB, Dweikat I, Savoiardo M, Lamperti C, Hildebrandt T, Tiranti V, Zeviani M (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871

    PubMed  CAS  Google Scholar 

  • Warenycia MW, Goodwin LR, Benishin CG, Reiffenstein RJ, Grancom DM, Taylor JD, Dieken FP (1989) Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 38:973–981

    PubMed  CAS  Google Scholar 

  • Wenzel A, Grimm C, Samardzija M, Reme CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    PubMed  CAS  Google Scholar 

  • Westrop GD, Georg I, Coombs GH (2009) The mercaptopyruvate sulfurtransferase of trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide. J Biol Chem 284:33485–33494

    PubMed  CAS  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Hheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    PubMed  CAS  Google Scholar 

  • Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    PubMed  CAS  Google Scholar 

  • Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32

    PubMed  CAS  Google Scholar 

  • Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) A reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937

    PubMed  CAS  Google Scholar 

  • Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P, Insko MA, Dumpit R, VandenEkart E, Toombs CF, Szabo C (2010) A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br J Pharmacol 160:941–957

    PubMed  CAS  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282

    PubMed  CAS  Google Scholar 

  • Wood KS, Buga GM, Byrns RE, Ignarro LJ (1990) Vascular smooth muscle-derived relaxing factor (MDRF) and its close similarity to nitric oxide. Biochem Biophys Res Commun 170:80–98

    PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    PubMed  CAS  Google Scholar 

  • Yang W, Yang G, Jia X, Wu L, Wang R (2005) Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol 569:519–531

    PubMed  CAS  Google Scholar 

  • Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    PubMed  CAS  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    PubMed  CAS  Google Scholar 

  • Zhuo M, Small SA, Kandel ER, Hawkins RD (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260:1946–1950

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from National Institute of Neuroscience and KAKENHI (23659089) from Grant-in-Aid for Challenging Exploratory Research to H.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimura, H. (2012). Physiological and Pathophysiological Functions of Hydrogen Sulfide. In: Hermann, A., Sitdikova, G., Weiger, T. (eds) Gasotransmitters: Physiology and Pathophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30338-8_3

Download citation

Publish with us

Policies and ethics